
sus*"^

C
I

(
1

1
I

(
I

(
[

I
•

I
I

[
[

(
(

[
I

[
(

by

Voodoo Software

1991 Europress Software Ltd

Programming and design

Manual Authors

Project Managers

STOS programs

Anthony Wilkes
Richard Lewis

Anthony Wilkes
Richard Lewis

Alex Blagg
Richard Vanner

Darren Ithell

Nick Harper
Richard Lewis

Anthony Wilkes

Write to Europress Software for help with defective discs or other initial problems:
Customer Services, Europress Software Ltd, Europa House, Adlington Park,
Macclesfield SK10 4NP.

ffiM0l
Mandarin is the entertainment

label for Europress Software Ltd

mroPREss
• SOFTWARE

Manual typeset by ^U^JjeS Stockport
No material may be reproduced in whole or part without written permission from Europress Software. While every care
has been taken to ensure this product is correct, the publishers cannot be held legally responsible for any errors or
omissions in the manual or software. If you do find any, please tell us!

Contents
1: Welcome 1

Making a disc back-up 2
2: In the beginning 3
3: Quick start 5

How to use this manual 6

4: Updating to the latest version of STOS 7
5: Installing the 3D extension 9
6: The Object Modeller 11

Introduction 11

Loading the modeller 11
Getting to know OM 12
The OM screen 12

Selecting shelves 13
Selecting parts of a block 15
Gluing blocks together 16
Saving objects 18
Customising blocks 18
Pulling lines 19
Pulling points 20
Groups 21
Surface detail 24

7: The object modeller tools 27
Part 1 Primary Commands 27

Problem objects 37
Part 2 Block Commands 38

Surface anchor points 40
Pulling rules 40
Selecting the sensitivity of the pull tool 42

Part 3 Group Commands 44
Part4 Surface Detail 53

Attaching a surface to a face 54
Positioning the surface 55
Attaching a surface to a 2D block 56
Re-using surfaces 57
Copying surfaces between objects and within objects 57

8: 3D Programming 61
Part 1 The 3D World 61

Space 61
Angles 65
Local coordinate system 66
The viewpoint 66

Choosing the best coordinate system 67
Part 2 The STOS commands 68

Positions 68

Angles 68
Objects 69
The display 69
The Redraw Loop 69
Loading and removing objects 70
Invoking objects 72
Object movement commands 72
Reading an object's position 73
Changing the attitude of objects 74
Bearing and range 75
Pointing an object 77
Converting coordinates 77
Object visibility 79
Collision detection 79

Animation 81

Surface animation 82

Backgrounds 84
Memory 86

9: Hints & Tips 89
Appendix A: Copying OM 93
Appendix B: File structure 95
Appendix C: The Utilities 97
Appendix D: STOS Errors 99
Glossary 101

1: Welcome to
the world of 3D

There is something magic about a 3D game. It is as if there is an infinity of space to
explore just behind your monitor screen. With STOS 3D we have tried to give you the
means to get behind the screen and create exciting and imaginative worlds of your own.

STOS is already by far one of the most powerful languages for 16-bit graphics and
with 3D we are literally adding another dimension.

We hope you will like 3D. It is based on one of the most sophisticated systems yet to
be developed and contains many features that are totally new.

Yet 3D is no harder to program than sprites and backgrounds. It uses the familiar
STOS commands specially adapted for 3D and optimised for the best possible
performance.

At the heart of 3D is the powerful 3D object modeller (OM). With this fascinating tool
you can design 3D objects as complex as those in any 3D game, using a simple set of
mouse controls and a fully interactive display. You can even add pictures to the faces of
your objects that you can animate under program control.

We have had a fantastic year designing STOS 3D. We can't wait to see your
programs. Now back up your discs and good luck with 3D.

(\mo^
Anthony Wilkes Richard Lewis

Making a disc back-up
Before proceeding any further, it's vital that you make an immediate back-up copy of the
enclosed discs. This will allow you to play around with the package to your heart's
content, without the risk of destroying something vital. The duplication procedure for a
disc is extremely straightforward.

The procedure for making back-ups is as follows:

1 Boot up the Gem Desktop.

2 Place a blank disc into drive A and format it using the menu command.

3 Now place the master disc into drive A and drag the drive A icon on to the drive B icon.

4 Follow the instructions displayed in the dialogue boxes.

5 Repeat actions 2 to 4 for the other disc. Refer to your Atari ST manuals if you have
trouble copying the discs.

6 Once the copy is complete, store the master discs in a safe place.

Important: The Object Modeller disc must be left so that it is write enabled. The system
needs to update a small file on the disc every time it is run, so please ensure you don't
write protect this disc. If you do, you'll be asked to unprotect the OM disc so that it can
continue its load.

^~3? 2: In the beginning
Computer graphics, and especially 3D, has a short history. Although the first computers
were developed in the late 40s and early 50s, notably at Cambridge and Manchester in
Europe and at MIT in the USA, computer graphics had to wait until the 60s and the
pioneering DEC 340 display.

By the standards of the early pioneers, graphics of any sort required very powerful
machines and very large memories. The memory-mapped raster display, the type used
exclusively in modern personal computers and workstations, took even longer. In the
early days no-one could afford (or even address) enough memory for a modern bitmap
and the earliest examples required a room full of magnetic store.

From very early on it had been recognised that, given enough power and storage,
computers could be programmed to model the laws of optics and generate perspective
views of objects in a simulated 3D space. The 3D line drawn cube rotating in real time with
hidden lines suppressed, exhibited at an early MIT conference, was an impressive sight. But
it was a long haul from there to the flight simulator displays of the late 70s with fully shaded
landscapes and thousands of polygons refreshed at 30 frames a second.

During the 80s as cheap personal computers entered the High Street, the world of
computer graphics became accessible to a much wider public. The early 8-bit, and
even today's 16-bit machines were no match for the special-purpose hardware
developed by companies like Evans and Southerland to run commercial simulations.
In many ways 3D graphics had to be redeveloped from scratch. In the main stream of
commercial 3D development hardware and software development go hand in hand.
The big 3D engines are based around sophisticated displays with much of the 3D
number crunching built into the hardware. On an ST or an Amiga all the work, or nearly
all, must be done by the processor.

The best 16-bit 3D software gets results by exploiting every possible shortcut and by
using a whole variety of tricks to save processing time. Only cut-throat competition
between games programmers has made this possible and it has all happened over the
last few years. The developers responsible for the graphics behind the best 3D games
have concentrated on one thing above all: Speed.

3D itself is not especially hard. You need high-school maths and a good textbook.
The trouble is that the results you would get using traditional methods would be far too
slow.

No-one today wants to go and make a cup of coffee while they wait for the next frame.
Because of this it's not surprising that the 16-bit 3D of recent years has been written in
highly optimised assembler, and not structured so as to be usable by the programming
public.

Added to this, the companies who undertook expensive 3D development have been
keen to protect their investment by keeping their code under wraps. This is why it is not
until now that 3D tools aimed at programmers have generally become available.
STOS 3D aims to change all that. With this package, anybody capable of a little
programming can create 3D games and other applications. And even non programmers
can design 3D objects.

3: Quick start
By the time you're reading this, you'll be raring to go! Don't be too impatient though.
You'll need to install the new STOS 3D commands onto a working copy of your STOS
language disc. The whole process takes about 10 minutes, but thankfully it only needs to
be done once. Here's a quick run-down of the general technique.

• Make an immediate back-up of the two discs supplied. If you're unsure about this, full
instructions can be found in chapter 1.

• Now place your new copy of the STOS 3D Installation disc into the internal drive, and
boot up your ST in the normal way. After a few seconds, the STOS welcome program
will be executed, and you'll be presented with the following screen:

STw3 3D

RE/ID ME

UPCHTE

INSTALL S3H

Figure 3.1

Read me

Displays a brief explanation of the 3D installation disc.

Update (see next chapter)
Updates your current version of STOS Basic and Compiler to the latest version.

Note: STOS 3D will only work with versions of STOS Basic from 2.6 upwards. So if
you're still using an earlier version, it's essential to upgrade immediately using the
updater included.

WARNING: Don't update the original STOS language disc until you are sure
you're Back-up works fine!

Install (see chapter 5)
Installs the 3D extension onto a copy of the STOS language disc and also to Compiler
disc (if required). As mentioned previously, 3D should only be installed on versions of
STOS from 2.6 upwards.

Booting the Object Modeller
To run OM, simply insert the STOS 3D Object Modeller disc into the internal drive.
Switch on the computer and the program will load and run automatically. After a short
delay the OM title screen will appear. Hit any key to begin your modelling session.

How to use this manual
The main documentation for 3D is divided into two parts. First a tutorial and instructions
for using the Object Modeller OM (chapters 6 and 7) and then a detailed account of the
Td (Three Dee) commands (chapter 8).

A glossary is included to explain any unfamiliar terms.
Whether you are an experienced programmer or not, we suggest that you start with

the Object Modeller. Make a few objects and take a look at the examples. This will give
you a good idea of the possibilities.

Once you have a feel for 3D objects read Chapter 8 entitled 3D Programming. This
explains 3D coordinates and gives all the background you need to use the Td
commands.

Once you have experimented a little with the language extension we suggest that
you read Chapter 9 on Hints and Tips. It could save you a lot of programming time.

4: Updating to
the latest
version of STOS

The STOS 3D commands can only be used with STOS V2.6 or higher. There's no need
to worry if you've got a previous version. We've helpfully included a free update to STOS
along with this product.

Here's the procedure in detail, for updating to the new version:

• The first job you must do is create a copy of your STOS language disc (see Making a
back-up). Once you've created a new STOS language disc and have tested it works,
you'll be ready to update this disc.

• STOS Compiler users should now make a back-up of your Compiler disc.

• Place the STOS 3D Installation disc into the internal drive and turn on your ST. The
3D installation program will automatically load into memory and the following
welcome screen will be displayed:

**mm_m_m
* 3D

mm m -w-s

REOIDMEv

UPDATE

INSTALL HSU

Figure 4.1

Select the Update button with the left mouse button.

The STOS Updater program will be loaded and a new screen will be displayed:

• The process of updating is completely automatic. If you want to update to a hard disc
though, you'll have to update a floppy disc first and then copy across the relevant
files (see below).

• WARNING! The updater will automatically delete any non-essential program files
from the backed-up STOS disc! So it's vital to ensure that you've made a copy of the
STOS language disc and are not using the original STOS master.

• You'll be prompted to insert the copy of the STOS language disc (the one you
prepared earlier) into the internal drive.

Your STOS language disc will be updated to the new version of STOS. Once the update
is complete, you will be given the option to update your STOS Compiler. If you have
STOS Compiler then press Y at the prompt and the Compiler update will load.

Installing the 3D extension
• To update a back-up of your STOS Compiler disc, follow the instructions on screen

(do not update your original disk until you are sure your back-up works fine).

Installing STOS onto a hard disc
• Follow the above procedure so that you have a copy of the new STOS on a floppy

disc.

Boot up your ST from your hard disc as normal
Enter the ST Desktop.
Insert your new copy of STOS into the internal drive.
Double click on the hard disc icon.

Drag the A icon into the hard disc window or to the desired directory.
Your new version of STOS will now be copied to your hard disk.

5: Installing the
3D extension

Now that you have a STOS language disc containing the new version, you'll need to
install a special extension of commands onto it. This extension adds on new commands
to STOS (similar to the picture compacter, Compiler extension).

• If you haven't already upgraded to the latest version of STOS, now's the time to do
so. Jump back to the previous chapter on Upgrading to the latest version of STOS.

The installation procedure is very straightforward:

• Place a copy of your Installation disc into the internal drive, and boot up your ST.
The Welcome program will now load into memory.

• Hard disk users should first install the new extension onto a floppy disc and copy the
relevant files (see next page).

STOS so

REv^D MEC

UPDATE

INST>1I_I_| r WM

Figure 5.1

You are now ready to install the STOS 3D extension file onto your new STOS
language disc.

Select the Install icon with the mouse and click once on the left button. This will

automatically load a separate Installation program from the disc.

• You will now be asked to insert a back-up of your STOS language disc into drive A.

• Follow the prompts for a successful install.

• WARNING! If the installer cannot find enough space on the disc, it will delete the
STOS loading pictures to make more disc space. However this will not affect STOS.

• Once the 3D extension has been installed on your STOS language disc, you will then
be asked if you have STOS Compiler, if not then you can skip this section.

• If you do have STOS Compiler, you will now be asked to insert a back-up of your
compiler disc into drive A.

• The 3D compiler extension will now be installed onto your compiler disc.

Important notes for STOS Compiler users
Due to the way STOS arranges its memory banks, there are two rules that we must obey.

• Compiled 3D programs use memory banks 14 and 15 as opposed to using only bank
15 in interpreter mode.

• The file C3D.PRG (which can be found on the installation disc) must be placed on
the disc with your compiled program. Compiled 3D programs will automatically load
this file into bank 14.

Installing the 3D extension onto a hard disc
• Follow the above procedure so that you have a working copy of the new STOS with

3D extension on a floppy disc.

• Boot up your ST from hard disc as normal.

• Enter the Desktop.

• Insert your new copy of your STOS language disc into the internal drive.

• Double click on the hard disk icon.

• Double click on the A icon.

• Double click on the STOS folder in the A:\ window.

• Find the file 3D.EXS in the currently displayed A:\ window and drag it to the STOS
folder in the hard disc window.

• The 3D extension will now be copied to your hard disc.

10

6: The Object
Modeller

Introduction
Object modeller (OM) provides all you need to design 3D objects.These objects can be
saved onto disc and loaded into your STOS programs. The objects you create can be
just as complex and interesting as those in any 16 bit game. OM will also create objects
that can be drawn quickly, both by the modeller itself and by the STOS Td (Three Dee)
commands.

As an extra, to make your objects just that bit unusual OM provides a way of adding
pictures to the faces of your designs. Lastly, the disc library of examples provides a
wealth of original objects illustrating both the simple and the more advanced aspects of
object design.

This chapter is a tutorial style, step-by-step guide to OM which takes you through the
steps involved in creating an object and saving it to disc. The following chapter gives a
full description of each of the OM controls.

Loading
We begin by loading OM. Place the OM disc into the internal drive and reset (or switch
on) your computer. After a minute or two the intra screen will appear. Press any key to
reveal the OM panel and above it a dark space with a row of small shapes along the top.

Loading OM from the Desktop
To run OM, double click on the OM. PRG icon. After a short delay The OM title screen
will appear. Hit any key to begin your modelling session.

Memory
OM is a very large program so if you're short of memory, boot the disc without using
the desktop
NOTE: Loading OM from the desktop uses an extra 32k.

Related files
OM requires a number of files in addition to the OM program itself. These files are
located in the OM folder. When you make copies of OM, make sure you copy the whole
OM folder along with OM.PRG and SIMPATHS. If you want OM to autoboot then you
must also copy the AUTO folder.

We recommend that you use a separate folder to store your objects and keep the
OM folder clear of other files, this will make copying OM easier in some circumstances.
As explained more fully in appendix A on Copying OM, each folder that is used to store
OM should contain a special file called 'ID' containing a unique two character identifier.

11

Every time you create a new OM folder you should run the supplied program sid.ttp and
choose a unique identifier when requested. You can change the identifier at any time,
simply by running SID again. If you don't do this OM will create an ID file for you but
the identifier will not be unique and this may lead to problems when it comes to
copying objects.

Getting to know OM
The best way of getting to know any software is by using it. You may be daunted by the
idea of making 3D objects, after all, even professional software houses usually stick to
2D sprites and backgrounds. We think you will be pleasantly surprised by OM and to
prove it we will make a complete 3D object right away. The object we are about to make
is a 3D version of the letter T.

Designing on object with OM is a little like building using a set of bricks. OM provides
a small number of basic shape types which you can stick together to build more complex
forms. OM is more powerful than a building set though because each basic shape can
be stretched and moulded, sized and mirrored giving you access to building blocks of
every conceivable sort. As you will see, blocks can also be decorated using OM's unique
surface detail feature.

The OM screen
The OM screen is divided into two parts. The upper section, the object display area, is
your window onto the 3D world. This is where objects are assembled and decorated.
The lower portion is devoted to OM's controls and the tools which you use to interact
with the display.

I I 0 6 0

>€|n-»o ^ oc 36" »Ve " |X n|b|a|M

i
i

mml X

5
V

m) t f.J)

LI SURFACE

DETAIL

r%,
•

•
•

+ -

S) X X * ^ •b

r^=i X I + !
i 3 X - • -- SI £ ,-. t B

Figure 6.1

12

The display area
The display area (in default mode) is divided into 12 shelves. Each shelf can hold one object.
The top row of five shelves are known as the system shelves and hold the five basic shape
types (see below). These basic shapes are known as blocks (even though some of them are
simply flat surfaces). The next row, the user shelves, provide somewhere to put work in
progress. They can contain your custom blocks, half finished objects and so on. The
remainder of the display is divided into two larger work shelves. All the modelling functions
operate on these areas.

System shelves

User shelves

Work shelves

•; d ; o
i i

i i

I

3»-C]n*D ^ OKI 3C i"/B v | X a|lD Q\%

A

0
^m X

©
C=S> SURFACE

DETAIL •

•

•

+ -

Panel OS} X 0 f.'i X tf =c *

i=i X I + +

C3 X • m. A U 1 a

Figure 6.2

Selecting shelves
One thing that may confuse you a little at first is that initially, except for the system
blocks, the display area is completely blank. The shelves themselves are not shown in
any way. There is a reason for this which will become apparent as you get used to OM.
To see where the shelves are, move the pointer into the display area, hold the left
mouse button down and move the mouse around. You will see the shelves light up as
you move through them. Get used to their positions.

Most of the OM tools work on a selected shelf, usually one of the work shelves. You
tell OM which shelf (or shelves) to work on by selecting the one you want. To select a
shelf simply move the pointer somewhere inside and click the left mouse button. OM
draws a box around the shelf to show that it is selected. Most OM commands work on a

single shelf, some work on a pair. No more than two shelves can be selected at a time.
The work shelves are the only ones used for modelling, the others are simply for storage.

Using the OM tools
OM provides three types of tool:

Multi-shelf tools
An example of a multi-shelf tool is the Copy tool. To copy the contents of one shelf to
another, click (left button) on the source shelf, click on the destination shelf and finally

13

click on the |n*o| icon. Try this now as follows:
First select the right hand system block, the small cube. Now click on the left hand

work shelf and then the !•*•! icon. You should see the cube appear in the work shelf.
Notice that it looks larger than before. This is because objects displayed on the work
shelves are moved closer so that you can work on them more easily. There is one other
multi-shelf tool: The Unite tool. We shall come to this soon.

i D 0 & .0

.-

3"E|n-»n ^ XI 3C .*, El 8 I X n|ln a|W

0
SP X A

1' 0|$
LI

if

SURFACE
DETAIL a

•

n

+
-

^SS X

i

\ X * ^* <h

1—> X 1 -!- +
1—1 X :~H|- rh H t R

Figure 6.3
Copying a block

One-shot tools
These are by far the most common tools. A one-shot tool acts on the selected work
shelf. You invoke it by selecting the shelf (if it's not already selected) and clicking on the
icon Zoom is a one-shot tool. Select the work shelf containing the cube and click the
I *° I icon. The display now changes to show a close-up view of the cube filling the
whole display. Click \~J5~\ again to restore the display.

Slide tools
A slide tool works just like a one-shot except that you hold the left button down over the
icon while you slide the mouse about. The pointer stays stuck to the icon while some
aspect of an object changes. The Rotation icon ^ is a slide tool. Make sure the work
shelf containing the cube is still selected and hold the left button down over the rotation
icon. As you move the mouse you will see the cube rotate. Spend a little time getting
used to the Rotation tool. Try to look at the cube from every angle. This is the most
frequently used tool.

Squashing and stretching
Our next task is to turn our cube into the upright part of the letter T. Before we do this
however we must align the cube so that it faces us straight on. There are special ways to do
this but for the present the simplest way is to get a fresh copy of the cube from the system

14

shelves, copying the block just as you did before. This time do not rotate the cube.
The next step is to turn the cube into a group. Groups are a way of combining several

blocks so that one tool can work on them all at the same time. We will say more about
groups later but for now we must turn the cube into a group of one block.

With the cube still selected, click with the right button on the I * I icon. Little dots
should appear on all the vertices of the cube. Now we can use the rest of the tools in the
group box on the right of the panel, and in particular the stretching tools 0 and RH.
These are both slide tools and you will find them quite intuitive to use, they stretch the
cube in the directions indicated by the arrows. With a little experimentation you should
be able to turn the cube into an upright post.

Incidentally, when you use the stretching tools, be very careful about the orientation
of the object you are stretching. You willsee why if you try stretching blocks that lie at an
odd angle.

• n O

Figure 6.4
Stretching a block

Selecting parts of a block

o

n

"

am X

•

SS X

i=j X

C3 X *>l w

Figure 6.5
Component selection icons

A block is made up from a number of faces, for example a cube has six. Each face is
made up of four lines and every line has two end points or simply points. Many of the
OM tools work on one or more of these components. See figure 7.2.2

Look in the component selection box in the lower left of the control panel. You will

15

see four pairs of buttons with a long vertical button to either side. The four select buttons
show a picture of a block with the different parts highlighted. These are the component
selection buttons. Click on the second from the top, the face selector. You will see one
of your block's faces highlight with a square (in some cases this square may
be transparent).

Click again to select a different face. Try also selecting lines and points (the bottom
two selection buttons). The only selection button that will have no effect is the top one,
the block selection button. This is usually only used in objects containing more than
one block.

Experiment with the selection buttons a little. You will notice that they only select
visible parts of the block. To select a hidden part rotate the block so that you can see the
part you want. You will find that it is now selectable. The de-selection buttons marked
with an X, de-select the corresponding component. The remaining two buttons we will
come to later. (For a complete explanation of component selection see Chapter 7.2,
block selection tools.)

Gluing blocks together
To complete our letter T we must add another block to lie across the top of the upright
part. Multiple block objects are formed by gluing together the objects in the two work
shelves. This can be done for a pair of blocks or for other multi-block objects.

First we select a face on each of the objects (one on each work shelf), then we select
the two shelves in turn and click on the |3»e| button. The new object appears on the last
shelf selected. You will see how this works when we join the two parts of our letter T.

Before we do this however we still have to make our second block. We do this using
a neat trick: Copy the upright block to the right hand work shelf and turn it on its side.
We now have the block we want and we can go through the gluing procedure. We wish
to join the top of the tall block to the bottom of the horizontal block. Select the correct
face of each block using the selection buttons (don't forget to select the shelf in each
case). When both faces are highlighted, select first the right work shelf and then the left.
Then click (left button) on the fjng| icon on the far left of the control panel.

n 0 • &

Selected face

o

Selected

face

Of
3HgD#D|^|lg|3C'|vi/'o| i | ja |n|iD|a|°-D

rr—SI)

SURFACE

DETAIL

Figure 6.6
Selecting the faces to be joined

16

In fact there was no need to turn the top of the T on its side. When you glue objects
together, OM automatically handles this for you.

The resulting two block object which appears on the left hand work shelf will probably
look a little strange. Move it around with the rotation tool and see if you can tell what is
wrong. The reason it looks strange is that OM is not yet drawing the blocks in any
particular order. It is not yet taking account of the fact that one of the blocks is behind the
other in most views. We tell OM to correct this by clicking on the |^?| tool. After a
second or two the blocks will be displayed correctly

• D 0 b 0

T [D1
\—f

3"E|l»lj d^1 CB 3C //Q i | X • |ln Q\%

(J
mm X

i
m

/ js

-...•• -;,-

0

E

SURFACE

DETAIL
•SI
D

•

•

+ -

SB X X -V »" (ft

i^^ X 1 -1- +
i—•> X 3TCSE ^ ++ t m

Figure 6.7
Joining the blocks

Before we save our letter T, we will complete the section on selecting components by
trying out the Block Select tool. Make sure the work shelf containing the T is selected
and clickon the I mm) I icon. You will see that one of the two blocks is now a line drawing
rather than a solid object; rather like the graphics in old 3D games. The other block, the
solid one is the selected block. Now click on the I X | icon (opposite the block select
button) to deselect the block.

Figure 6.8
Block selected

17

Click I — I again. The situation is reversed. You might wonder why we show selected
blocks in this way. The reason is that whatever the attitude of an object, the selected
block is always visible; you can see it through the others. This makes editing easier in
more complex objects. Actually there is an alternative way of highlighting selected
components and we will come to this when we deal with surface detail later on. Now
click on the I X | icon (the one opposite the block select button) to deselect the block.

Saving objects
If all has gone well you should now have your first 3D object, the letter T like the one in
Figure 6.7. To save the object ensure the object is still selected, click on the [0] button
and when the file requester appears, type in a suitable name and click on the
10*01 button.

Customising blocks
The number of interesting objects that you can create with the five basic shapes is of
course limited. In this section you will learn to make new basic blocks out of those
provided. Before you do this though, take a good look at the system blocks by copying
them to a work shelf and moving them around. Look at them in zoom mode and try
positioning them by clicking on the |<i=D|, [S] and 0 tools. You will notice that only two
of the blocks have depth. The three on the left have no thickness. They are especially
useful for such things as the wings of spaceships.

18

Pulling lines
We illustrate line pulling using the cube again. Copy this block to the left hand work shelf
and select one of the faces. Now select one of the lines on that face. We will now pull
that line.

The tall button to the right of the selection box is the Pull tool. It is a slide tool so you
must keep the left button down over it while you move the mouse around. When you do
this, do so gently using the tip of the icon

Selected line

\

Effect of pull tool

\

'J."

\\'il /^ Selected
\l/ face

Figure 6.9
Pulling a line

the effects can be quite dramatic. The sensitivity of this control is greater in the lower
portion of the icon.

19

Pulling Points
To illustrate point pulling use the five pointed shape, second from the right on the system
shelves. Select one of the three pointed faces and then one of the lines touching the top
of the pyramid. Now select the top vertex with the point selector. Try using the [f| tool
again.

Effect of pull tool

/

\ V Selected point

R^^^r^ •Selected line

/ V>^k—* Selected face

,7 y^^

"

Figure 6.10
Pulling a point

After some experimentation you may be confused about the rules for pulling lines and
points in the 3D blocks. Here is an explanation:

• You can pull any line.
• You can only pull points in certain cases. OM does not let you pull points that have to

be in a certain place to keep the faces flat. Blocks with bent faces are not allowed!
• To pull a line you must have both a face and a line selected (actually, selecting a line

automatically selects a face but you will need to select faces to get access to all the
lines). When the line moves it moves in the plane of the face joined to the
selected face by the selected line. This may seem complicated but it's not. The
best way to think of it is to imagine that the selected face is a door with the handle on
the selected line. Pulling the line is like opening the door.

It will probably take you a short time to get used to these rules. With a little thought you
can design any convex shape with the same number of faces, lines and points as the
original block.

Finally, try pulling one of the points in the 5 pointed flat shape on the left system
shelf. This is the only way to change the shape of a 2D block. You will find that you can
move the selected point anywhere within the plane of the block itself. See figure 6.11.

20

Figure 6.11
Point pulling on a 2D block

Look at the custom blocks in fig 6.12. See what a wide range of shapes you can make.

Groups

Figure 6.12
'Some custom blocks'

Earlier, when we were using the stretching tools we touched on the topic of groups. Now we
willdeal with the subject more fully. The group icons are located on the right of the panel.

i |

T
+ -

X * + *

I -:• +
s—s i rS •4 I E)

Figure 6.13
Group icons

So far we have learnt how to select individual blocks. When we are dealing with more
complex objects containing several blocks we will need a way of working on more than
one at the same time. Let's make a more complex object, the letter H. Can you see how
this can be done?

21

We use the horizontal block that formed the top of our T again. It is still in the right
work shelf with one of its faces already selected. Make sure the T shelf is selected and

select the face which forms the bottom of the the upright strut. Now run through the
gluing procedure again. Click on the right shelf, click on the left shelf and then on the

llfrCI button.

When the new object appears, click on |i^?| to get the ordering right. Lastly rotate

the resulting object so that it is the right way up for a letter H. Next, to give the H a more
3D look, let's introduce a small gap in between the blocks. We could do this by moving
single blocks but because we are discussing groups let's try moving two blocks at a

time, say the right vertical block and the cross member.
To do this we need a way of telling OM which two blocks we mean. We will do this by

selecting the two blocks in turn and, as we do so, adding them to the group.
Select one of the two, say the vertical. Now click on I * I in the group box with the

left mouse button. Then select the other block, the cross member and click | * | again.
You will see that the points of the two blocks light up. We now have a group of two. Can
you guess what the I - I button does? It removes a block from the group.

It's worth mentioning here that there is a shortcut to group selection which can save
time when you are working with complex objects. If you click with the right mouse button
on the I * I icon, all the blocks in an object get added to the group. The same goes for
I - l; the whole group is cleared.

Each of the tools in the group box does something to the current group but many of
them require another piece of information. The tool we are about to use, the (jj tool,
moves a group away from or towards a selected face. We say that it moves the group
normal to the face. The LD tool is a slide tool but if you click on it now you will get a
message complaining that there is no block or face selected.

Select the block not in the group and then the face with the cross member attached
and try again. Gently move the mouse to the right. Do you notice what happens? The
whole group moves away from the selected face.

22

Selected face

Grouped blocks

Figure 6.14
Moving a group normal to a selected face

Now, as an exercise, try making a similar gap between the cross member and the other
vertical strut. We are aiming for the effect in figure 6.15.

Figure 6.15
The completed letter H

While we are on the subject of groups, let's try some of the other group tools. Make sure
you have a group and a face selected. Now try the [S| button. Once again this isa slide
tool. It moves the group parallel to the selected face. This tool is particularly useful when
you wish to position blocks after a join operation.

The \&\ tool just below, provides the one further operation that is needed; it rotates the
group in a plane parallel to the selected face. Now that you understand the concept of
groups, read the reference section on the group toolbox in Chapter 7.3.

23

Surface detail
We now come to a completely unique feature of OM - the surface detail toolbox. With
surface detail you can design pictures to decorate the faces of your objects. To
demonstrate, let's get a fresh cube onto the left hand work shelf (you can save your
letter H if you wish).

Now using the face selector, select one of the faces. We are now ready to open the
surface detail tool box. Do so carefully so that the tools don't spill out all over the floor. At
the centre right of the panel is a square area marked Surface Detail. Click somewhere
inside and notice what happens.

Firstly the surface detail area is replaced with 12 new buttons. These are the tools.

m • • a e

$
m/

>€ln-»p 30 36> //o
:"

STOS SI)

SURFACE
DETAIL

Did flfe

Figure 6.16
A surface detail editing section

Secondly a criss-cross pattern appears in the display area replacing the right hand work
shelf. This is the surface design matrix. Actually there is one more change: The square
pattern that identifies the currently selected face of the cube disappears and instead the
face is outlined with a faint dotted line. This is so that the surface details will not be

obscured (you can switch between these two methods of face highlighting with the
[%] button).

Let's design a simple detail. Move the mouse somewhere inside the matrix and drag
it a little way with the left button down. When you release the button you should see a
line appear reflecting your 'drawing' movement. Using this technique you will find that
you can draw quite freely.

Now to design a surface detail. First of all let's clear the matrix. Click on the *\
button in the surface toolbox. Now draw a closed shape on the matrix. The shape must
be closed, that is, it must join up exactly and enclose a region of the matrix with no gaps.
If it is not closed OM will tell you when it attempts to attach the surface to a block.

Now all that remains is to decorate our face. Click on the [£] icon. The surface
should appear on the selected face. You will notice that the picture on the block is
somewhat different to the one on the matrix. It is solid and not a line drawing. This is
how surface detail works. It's also why we had to be so careful about closing our shape.

24

The shape may also have a different orientation to the one on the matrix. Try clicking
on the [5J] icon. The shape will rotate. Now that you have a taste ofsurface detail, turn
to part four of the next chapter for a full explanation of all the tools.

That ends the OM tutorial. Of course we have only covered a tiny fraction of the things
that you can do with OM. But now you have the general idea you will find that the next
chapter contains plenty of explanation.

Just a final word. At Mandarin (and at Voodoo Software) we are very keen to see
your objects as well as your programs. Feel free to send them to us along with any
suggestions you may have for improving OM.

25

r
o

7: The object
modeller tools

This section is divided into four parts. Each part is concerned with a group of controls on
the OM panel. At the beginning of each part is an illustration of the panel controls
concerned. When you are more familiar with the commands, you will find the quick
reference card useful as a reminder. Many of the buttons are in fact two tools in one.
These are known as double commands. You use a different mouse button for each.

7.1: Primary Commands
The primary commands are those which operate on whole objects or shelves. Most are
located on the top row of the panel.

jMCinnn <±3> ISO 3tf "Vn 8 I -o • in a|M

0|0
Q

(1

SURFACE
DETAIL •

•

•z-zz \

Figure 7.2.2
Primary icons

We discuss the use of these commands from left to right, top to bottom. In some cases
the buttons invoke features such as surface detail which are dealt with in one of the

other parts of this chapter. Some of the commands have effects which depend on which
of the two mouse buttons is pressed. Unless otherwise specified, clicking means
pressing the left mouse button.

j^_ The Unite or gluing tool

This is a double command.

Left mouse button - Unite

Purpose

Method

This tool unites the objects in the two work shelves to yield a compound
object.
Select the face on each of the objects where you want the join to take
place. Select the two work shelves, one after the other. Click on the Unite
button. The resulting compound object will appear in the last work shelf
selected. The contents of the other work shelf will remain unchanged.
Note that no object can contain more than 8 blocks. The effect of Unite
can be undone using the I $ I button.

Comments You will need to use the Precedence tool |r^?| after a Unite operation.

27

Right mouse button - Unite and group
Purpose To unite two objects, order the blocks and select a group ready for

positioning.
Method Proceed exactly as above. The effect is the same except that several

additional operations are performed:

• The selected block and face on the destination shelf remain selected.

• The blocks added to the object from the source shelf are automatically selected as a group.
• The resulting object is automatically given correct precedence just as if

the |r^?l tool had been used.

Comments

•*•

When you unite with the right button OM performs all the operations
necessary to prepare the new blocks for final positioning using the face
relative movement tools. This is such a common next step that OM
provides this sequence of commands in a single operation.

Copy tool/Copy group tool

Left mouse button - Copy
Purpose This tool copies the contents of one shelf to another, leaving the source

object intact.
Method Click on the source shelf (the one you wish to copy from) and then the

destination shelf (the one you want to copy to). Click on Copy.
Comments Copy always places an object on the target shelf in its unrotated attitude.

If you want to copy an object at its current attitude, click on the rotation
tool with the right mouse button first.

Right mouse button - Copy group
The right mouse button may be used with the Copy tool to copy only the selected group.
This is covered under Group Commands, chapter 7.3.

S1 Precedence/Culling tool

This is a double command.

Left mouse button - Precedence

Purpose To arrange the blocks comprising an object in such a way that the object
will be ordered correctly when viewed from any angle.

Method Click on the work shelf containing the object to be treated. Click on the
Precedence icon with the left mouse button. This process can take a few
seconds for complex objects.

28

Comments Occasionally you will find that this operation fails, with blocks that should
be in front appearing behind and visa versa. The usual reason for this is
that blocks have somehow become slightly embedded within one another.
For more information on how to cure this problem, see Problem Objects.

Mounting blocks inside one another
It is possible to order an object correctly with one block inside
another (see the object struct). To see the inner block you can make
windows in the outer block using surface detail. To make this work you
must arrange for the inner block to have a lower block
number than the outer block. You can display the block number of each
block by selecting it and using the |jf] button.
When you unite a block to an object, the new block is given the block
number zero. Using this fact you can arrange your blocks in the correct
order before using (or re-using) the Precedence tool.

Right mouse button - Culling
Purpose To compute surface, block and object culling depths for an object.
Method Click on this tool using the right button. An object can be unculled by

reloading it into OM and saving it again.
Comments Culling is a way of speeding up drawing in a STOS program when objects

are so far away that detail, or the whole object, is small compared with the
resolution of the screen. For each surface detail and block, OM calculates
the distance beyond which that component is too small to be worth
drawing. When you run the object in a 3D program the details on the
surfaces and the blocks themselves will disappear, each at an appropriate
depth. A culling depth is also calculated for the whole object. When it is
displayed at a distance greater than this it will be replaced by a dot or a
short line. In some types of program this can greatly speed up object
processing.

®D Delete object tool

Purpose Removes an object from a shelf.
Method Click on the shelf containing the object to be deleted and then click on the

Delete button.

Comments The effect of Delete can be undone using Undo.

Delete block/delete group tool

This is a double command.

Left mouse button - Delete block

Purpose Removes the selected block from the object on the selected work shelf.
Method Click on the work shelf containing the object to be simplified. Click on the

29

I mm | button in the selection box until the block you wish to remove is
highlighted. Click on Delete Block. The effect of Delete Block can be
reversed using Undo.

Right mouse button - Delete group
Comments The tool may be used with the right mouse button to delete the current

group. This is covered under Group Commands, chapter 7.3.

sVQ Snap/Centre tool

This is a double command.

Left mouse button - Snap
To tidy up an object by bringing nearby points together.
Select a block, a face, a line or a point or the whole object (by selecting
only the shelf). Click on the Snap icon using the Left mouse button. Snap
normally works only on the component selected. If no component is
selected, Snap works on the whole object.
Because Snap brings points within a certain distance of each other
together, you can make Snap more or less sensitive by changing the
size of the object with the [§[] tool (see 7.3 Group Commands below).
Some care is needed with this tool however since it takes no account of

the flatness of faces. If you make an object very small and then Snap you
may get an object with bent faces. This will not necessarily display
correctly. Because Snap can introduce small errors it is a good idea to
wait until your object is complete before using it. There is a temptation to
use Snap whenever you notice some small discrepancy in an object -
don't! Or at least if you do, save a copy of the unSnapped object first.

Right mouse button - Centralising
Purpose To centre an object at a selected point or at its centre of gravity.
Method Click on the icon with the Right mouse button. If a point on the object is

selected the object is centred about that point. Otherwise OM calculates
the Centre Of Gravity of the whole object and makes this the object's
centre. The centre of gravity of an object is a point, usually but not always
inside the object where all the object's mass acts (of course our 3D
objects only have notional mass). If you actually made the object out of
some real material and you had a way of balancing it on a spike, the
centre of gravity would be the point at which it just balances.

Comments The position of an object's centre is important for two reasons. Firstly it is
the point about which the object rotates, either under the control of the
rotation tool or under control of a STOS program. Secondly the centre of
an object is the point whose coordinates you specify when you use one of
the TD positioning commands.

Purpose
Method

Comments

30

!
Purpose

Method

Comments

Purpose

Method

Comments

Note that you may not always want an object to be centred about its
centre of gravity. If you want an object to swing around a point at one of
its extremities for example, that is where its centre should be. You can
use the Group commands (with the whole object as a group) to perform
centring about non centre of gravity points which are not vertices of the
object. If you use one of these tools to move an entire object the centre
stays where it is.
Note that the XYZ commands below do not move the centre of an object.
They simply move the existing centre to a different point on the shelf; a
subtle but important difference!

Undo tool

To undo the effect of the copy, unite, delete and undo commands. Both of
the work shelves and the user shelves have a 'memory' of the last
operation performed.
Click on the work shelf to be undone. Click on Undo.

Clicking again on the icon will restore the undone object. Clicking a third
time will perform the undo again and so on.

Zoom tool

Causes the whole display area to be devoted to the object on the selected
work shelf.

Click on the work shelf to be zoomed. Click on the zoom icon.

Zoom is provided for two reasons. Firstly it lets you take a much closer
look at the object you are working on. Secondly it speeds up the system
by removing the other objects on the display area. The XYZ tools can be
used in zoom mode to move the object about and to bring it closer (or
further away). Use of the Zoom tool will not affect the position of the
object in regular display mode. Zoom is also useful in situations where
you want to look squarely at an object, rather than from the side.

• XZ-Align tool

This is a double command.

Purpose Used to align a face of an object parallel to the XZ-plane. See the
glossary for a description of 3D axes.

Method Select a work shelf and then one of the faces of the object on the shelf.

31

Click on the icon. The left mouse button causes the selected face to point
up. The right button makes it face down. If no group is selected the whole
object is aligned, otherwise the alignment affects only the grouped blocks,
(see Group Commands)

Comments One important use of this tool is in conjunction with the Stretching and
Symmetry tools. The former can be used to stretch a group of blocks
either horizontally or vertically. If the object being stretched is not in the
correct attitude, it can produce unwanted effects. The Align tools allow
you to select the correct attitude accurately. You can also use these to
make two faces parallel. To do this you must define two groups and align
them separately with one of the axes.

P YZ-Align tool

This is a double command.

Purpose Works in exactly the same way as the XZ-Align tool. The same comments
apply. Left and right buttons produce opposite effects.

Method Select a work shelf and then one of the faces of the object on the shelf.
Click on the icon.

Comments See the comments for the XZ-Align tool.

XY-Align tool

This a double command.

Purpose Works in exactly the same way as the XZ-Align tool. The same comments
apply. Left and right buttons produce opposite effects.

Method Select a work shelf and then one of the faces of the object on the shelf.
Click on the icon.

Comments See the comments for the XZ-Align tool.

Us
H

Highlight mode tool

Purpose
Method

Comments

To select the highlighting method used by OM to show selected components.
Click on the icon to change mode. The diagram in figure 7.2.2 shows how
components are highlighted when selected. In the default mode all surface
detail is suppressed when components are selected.

Alternate mode is suitable for surface detail editing where the selected
face must not be obscured. Otherwise default mode provides clearer
information. If you want to look at a complete object without de-selecting
components, switch temporarily to Alternate mode.

32

0 File tool

This is a double command.

Purpose To load or save an object.
Method Click on the shelf containing the object to be saved, or the shelf into which

you wish to load an object. Now click on the File tool to bring up a
filename dialogue. At the top of the dialog is a path box containing the
current directory. Initially this will be the directory from which OM was
launched. The path may be edited freely. Pressing ENTER or clicking on
the disc icon causes the new directory to be read and displayed in the list
box. Filenames may be selected either by clicking in the list box or by
typing inthe filename box (or both). Once the path boxand the filename
box are correct click on |b+d| to load or |d*b| to save. 1X| cancels the
operation.

Directories are indicated in the list box by an asterix against the
directory name. A double click loads the new directory. At the top of the
list is a special directory 'Parent. Double clicking on this loads the
directory containing the current one.

Right mouse button - Quick mode
There is nothing more irritating than waiting for a file dialog to read a large
directory when you know what you want or when you want to change
directory immediately. If you click on the File icon with the right button
instead of the left, directory reading is suppressed and the dialog appears
immediately. You can always force a directory read with the [0] button.

Comments When you save an object make sure that it is facing the way you want it to
face in your STOS program. Of course you can rotate it under program
control but you will find objects much easier to control if they all have the
same standard (unrotated) attitude.

The same applies to centralising. Make sure that the rotation tool
swings your object about an appropriate point. For details of centralising
see the Snap/Centralising tool above. If you want your object culled, be
sure to click the culling button before each save.

File structure

Objects are multi file entities. The details are explained in appendix B on
File Structure. When you save an object OM checks that all related .3DT
and .3DS files are present in the same directory and adds them if they are
not. Because of this the File tool provides the safest way of copying
objects from one disc or directory to another. For an alternative, see
appendix C describing the three Utility programs OL, PRUNE and SID.

33

m Info tool

Purpose To display technical details of the object on the selected work shelf.
Method Hold the left button down over the icon for as long as you wish information

to be displayed.
Comments Some of the STOS commands allow points within an object to be

manipulated directly from within a program. Other commands make use
of other object components such as faces and blocks. The Info tool
displays the information needed to identify these units. According to which
components have been selected within the current work shelf, the
following data will be displayed:

R:r The radius of the object. This is actually the radius of the
circumsphere; the smallest sphere which will contain the
object. It provides a very useful guide to the size of the object.

B:b The block number b

F:f The face number f within the selected block

L:l(len) The line number /within the selected face. The number in
parentheses is the length of the line. This can be very useful
prior to a Join operation.

P(p1 ,p2) The point number p1 within the selected block. The point
number p2 relative to the whole object.

The animation command uses p2 to identify points. If you want to place
blocks inside one another you will need to know the block number b.

Surface detail tool

Purpose To put OM into surface mode and display the surface detail editing
window. The icons in the surface detail panel box become active.
Only the object on the left work shelf may be the subject of this operation.

Method Click anywhere on the panel marked Surface Detail. The panel will be
replaced by a set of surface editing tools.

Comments For a full description of surface detail editing see part 7.4.

m Colour combination tool

This is a double command.

Purpose To select the colour combination for a block. It does not change the
palette in any way; it simply allows you to select which faces take which
colours out of the OM palette. There are up to 10 possible combinations
which vary according to the type of block selected.

34

Method

Comments

Select a work shelf containing an object. Select one of the blocks. Click
on the icon repeatedly until the block shows in the desired colour
combination. The left button moves forward through the sequence, the
right button backwards.
The purpose of this function is to let you select the desired contrast
between faces and blocks. Once an object has been designed which
looks correct in the OM palette, a suitable palette can be designed from
within the STOS program which uses the object or using OM's RGB
colour drafting tools. Note that objects use only colours 8, 9, 10, 11, 12,
13 and 14 leaving other colours free for backgrounds and other effects.
When you click on this icon the combination number and the three colour
numbers are displayed. These are the colour numbers of the block's
faces. Any surface detail will also be drawn in a combination of these
colours. If the block is one of the 2D blocks which have only two faces,
the third of the three displayed numbers should be ignored. (The third
colour of a block is actually always the logical OR of the first two). Of
course you can make objects containing more than three colours by using
several blocks.

RGB tools

Purpose To allow the amount of red, blue or green comprising a given colour to be
adjusted. They also allow the colour number associated with object
components to be ascertained.

Method Click on a face of any object in the display area. Now hold the left button
down over one of the RGB icons. As you move the mouse from side to
side the intensity of the associated colour component changes.

Comments While the left button is down over one of the RGB controls OM displays
the following information:

C:c The colour number c of the colour being adjusted
R:r The amount of red r in the mixture (0 to 7)
G:g The amount of green g in the mixture (0 to 7)
B:b The amount of blue b in the mixture (0 to 7)

This information may be used in a STOS program to generate a
suitable palette.

E Reset tool

Purpose
Method

Causes OM to be reset to its initial state.

Click on the icon.

35

Comments When you reset OM all work not previously saved will be lost. OM will ask
you to confirm that you want to reset the system.

\M Quit tool

Purpose This tool implements an advanced software removal algorithm.
The OM software is carefully removed and each byte is thoroughly
cleaned.

Method Click on the icon.

Comments You will be prompted to confirm that you wish to leave OM.

m Rotation Tool

This is a double command.

Purpose To rotate the object on the currently selected work shelf.
Method Hold the left button down over the icon and move the mouse. A left/right

movement rotates the object about the y-axis, an up/down movement
rotates it about the object's x-axis.
Click with the right button to redefine the object's axes after a
rotation operation.

Comments It is well worth understanding clearly what happens when you use the
rotation tool.

Left mouse button

With the left button OM uses a system known as Euler Angles. To
visualise Euler Angles imagine placing your object in the centre of a
gramophone's turntable. Moving the mouse from side to side rotates the
turntable. Moving the mouse up and down tilts the object up and down,
but always about the same axis relative to the object. If you rotate the
turntable through a right angle and then move the mouse up and down
the effect would be to rotate the object in the plane of the screen.

In other words objects rotate about their own axes and not the fixed
screen axes. Using the left button alone, it is not possible to see the
object in every possible attitude. That's where the right button comes in.

Right mouse button
The right button lets you redefine an object's axes. Whatever the current
attitude of an object, pressing the right button over the rotation icon
causes its axes to be defined parallel to the screen axes. In other words
OM now considers the object to be unrotated in its current attitude. You
can see this if you copy the object to another shelf; it will appear in exactly
the same orientation.

Whenever you save an object OM does this for you; the object is
saved in its current attitude.

36

•1 r.

•J L>
ft ^ XYZ Tools

These are double commands.

Left mouse button

Purpose To move the centre of a shelf in the direction indicated by the one of the
six arrows, left, right, up, down, towards the observer and away from the
observer.

Method Click on one of the arrows.

Comments Each click on one of the XYZ icons moves the shelf a standard distance
in the indicated direction. You are free to move shelves as far as you wish
in any direction. You should avoid bringing them too close though as this
may prevent correct drawing of the object.
The tool moves the shelf and with it the object. It does not change the
position of the object's centre relative to the object, to do that use the
Centring tool. Note that there is no visual difference between increasing
the size of an object and moving it closer.

Right mouse button
If you hold the Right button down over one of the XYZ icons you can move objects
around continuously, rather than in jumps. All four of the XY icons behave the same way
and move the shelf parallel to the screen. The two Z icons translate mouse up-down
movements into depth changes in the shelf.

Problem objects
Sometimes, when you are modelling an object you may find it hard to make the blocks
appear with the correct precedence. A block may appear in front when it should be
behind, even after using the Precedence tool.

If this happens to you, the reason will probably be that the faces you have glued
together using the Unite tool have somehow become slightly embedded within one
another. The precedence tool will not work properly unless the blocks are separate, that
is either butted up exactly or with a gap between them. The faces must not be broken.

To solve the problem move suspect blocks a little way apart and try the precedence
tool again. Once you have found the problem you can bring the blocks together again
taking care not to push one inside the other.

Remember that OM does not complain if you move blocks through one another
(modelling certain objects would be hard otherwise). In fact there are some cases when
you actually want one block to be inside another.

This problem tends to crop up more often with objects that you have been working on
for a long time. Although OM is very accurate, many modelling operations can introduce
small errors, sometimes making the faces of blocks slightly bent. OM constantly
attempts to remove these cumulative errors but it can not always do so, especially on
very small blocks. If a face looks a little bent, or wrong in some other way, try
remodelling that block on its own. You can always isolate individual blocks using Group
Copy and Group Delete (see chapter 7.3).

37

7.2: The Block level tools

The tools described in this section are located on the lower left of the OM panel.

1 | 1

0
0

^m X A.

i

^S X

r—1 X

C3 X •. — - Sii

Figure 7.2.1
Component selection and pull tools

These tools are grouped together because they all have something to do with the
components of objects.

Component selection tools
The four component selection icons each depict a block with a different component
highlighted.

Normal

Mode

Alternate

Mode

No component Block

selected selected

C3

:

Face

selected

:

Line

selected

C5

L Z

Point

selected

C3

e^j

§39 X immJ X 1=1 X • X

Figure 7.2.2
Selected components

To the right of each of the selection icons is a smaller icon bearing the symbol 1*1.
These are the de-selection controls. They undo the effects of their corresponding
selectors.

All four selection tools work in similar ways. They cause the indicated component on the

38

selected work shelf to be highlighted. As you click on the selectors OM cycles through all
the possibilities for that type of component within a higher level selected component.
OM provides two alternative ways of indicating selected components. The default mode
is usually the most appropriate. However if you are working on surface detail, or you
wish to see the object with only minimal highlighting, you can change mode by clicking
on the [%] icon. This is located among the primary tools and not in the block level box.
For a description of the two modes see the Highlight tool in chapter 7.1.

Block selector

Some operations require a block to be selected. If the object contains only one block
there will be no visible effect of doing so. If there is more than one block, one of them -
the selected block - is shown as a solid, the remainder being drawn as outlines. This
allows you to see the whole of the selected block even if there are other blocks in the
way.

As you click repeatedly on the block selector OM cycles through the blocks, selecting
each in turn. Stop at the block you wish to select.

Face selector

The face selector cycles through the visible faces in the selected block highlighting each
in turn. If no block is currently selected, OM selects one for you. In default mode the face
is highlighted with a square or triangular panel. If the selected block is one of the 2D flat
types, only one face can be visible at a time. In this case OM does not highlight the
selected face.

c 1 Line selector

The line selector cycles through the lines bordering the selected face highlighting each
in turn. If no block or face is currently selected, OM selects them for you. The selected
line is indicated with a broken line drawn over it. Because of colour contention it is
sometimes difficult to see the selected line. If this happens, rotate the object to a new
attitude until you see the broken line.

C3 Point selector

This is a double command.

39

On 3D blocks the Point selector flips between the end points of the selected line,
indicating the points with a small arrow. If no block, face or line is currently selected, OM
selects them for you. On 2D flat blocks the selector cycles through each of the points.

Surface anchor points
The point selector has another use which is dealt with in the section on surface detail. If
you use the right button instead of the left, OM designates the selected point as a
surface anchor point. See chapter 7.4, Surface Detail.

Pull tool

This provides a means of altering the shape of a block by pullinga line or a point. If OM
were a 2D object editor this would be easy. As it is, a 2D mouse and screen cannot
provide sufficiently good visual feedback to let you know how a line or a point is moving
in 3D space. The depth dimension confuses the situation. Additionally, OM has to
ensure that all faces remain flat. This places restrictions on certain operations.
To pull a point or line proceed as follows:

• Select the component you wish to pull (line or point)
• Click on the upper part of the pull icon and hold the left button down
• Gently move the mouse
• Release the left button when you have affected the desired change.

The rules governing point and line pulling are given below. To make interesting shapes
you need to plan a sequence of operations. The method may seem a little awkward at
first. Persevere. With a little practice you will get the hang of the controls. They provide
enough flexibility to make any convex shape with a given number of points. Look at the
example objects. You will be surprised at the wide variety of shapes that can be made
from the simple basic types provided. Here are the rules:

Pulling rules

Point pulling
• You can only pull points in certain cases. OM does not let you pull points that have to

be in a certain place to keep faces flat. Blocks with bent faces are not allowed! It is
impossible for this reason to pull a single point in the eight-pointed basic cube. Edit
eight pointers by pulling their lines.

• When you can pull a point of a 3D block it always moves along the selected line,
produced if necessary . When you pull one of the points of a 2D (flat) block it moves
freely in the plane of the block.

40

, / W"^ Selected face

i / J ^
i I y
'I y -'•
i^j^I -

Effect of pull tool

Selected point

Selected line

Figure 7.2.3
Point pulling on a 3D block

Point pulling is the only way of changing the shape of flat blocks.

Selected point

ii
A i \

/
/ \

Figure 7.2.4
Point pulling on a 2D block

Line pulling
• Any line on a five or eight-pointed block can be pulled.
• When you select a line in a selected face you identify two faces uniquely. The first is

the selected face, the second is the face attached to the selected face by the
selected line. We will call these the primary and secondary faces respectively.

41

When you pull the line it moves in the plane of the secondary face. The best way to
think of this is to imagine that the selected face is a door with the handle on the selected
line. Pulling the line is like opening the door.

Selected line
Effect of pull tool

Figure 7.2.5
Pulling a line

Selecting the sensitivity of the pull tool
Sometimes you will want to make a big change to a point or line. Other times you will
want a small accurate change. The sensitivity of pull depends on the part of the pull icon
you click over. At the top the sensitivity is least; you can move one unit at a time. Further
down the icon the sensitivity increases. The sensitivity you have selected is displayed
(see below).

Sensitivity: Iength=length0+change

* Least

Increasing sensitivity

Greatest

Figure 7.2.6
Pull sensitivity

42

When you pull a point or a line the information displayed is very useful for making
symmetrical blocks. If the block is one of the 3D blocks the information is as follows:

Sensitivity is the pull sensitivity you have selected. The number is the size of the
smallest change the operation will resolve.

length is the length of the produced or truncated line
lengthO is the length of the produced or truncated line prior to the pull operation
change is the amount by which the produced or truncated line has changed

If you want to perform two or more equal pulls so as to make a block symmetrical,
change in both cases should be the same.
If you are pulling a point of a 2D (flat) block the information is the same except each of
the numbers above are coordinates of the form (x,y). These tell you the coordinates of
the point as it changes.

Undo tool

If you make a mistake during a pull operation, this tool will undo it. A second click on
Undo restores the 'mistake'. This also applies for group operations.

43

7.3: Group commands
Grouping is a way of identifying a selection of the blocks comprising an object.
Sometimes a group will be just one block that you want to single out for manipulation,
sometimes several blocks and sometimes you will want to turn a whole object into a
group. A group is different from a selected block. In fact to use some of the group tools
you will need both.

With the exception of the group defining tools I *• I and I - I, the commands
described below work only on the selected group. You may define one group on each of
the two work shelves.

1 1
+

X * # *

i +

- iti A ^ ! a

Figure 7.3.1
Group icons

Group highlighting
OM indicates which blocks belong to the current group by drawing a small dot at each vertex
(corner point) of each block in the group. These dots show through any obscuring blocks.

Selecting a group

These are double commands.

You set up a group on the selected work shelf using the f
These work in two ways:

and commands.

Left mouse button

If you click on I * I with the left mouse button any selected block is added to the
current group. If you click on | - | with the left button any selected block is deleted
from the current group.

Right mouse button

If you click on I * I with the right button, OM makes a group out ofall the blocks in the
object. If you click on | - | with the right button the group is cleared completely.
Once you have selected a group you are ready to use the group commands.

44

Face relative movement tools
One of the most difficult aspects of object design is judging the relative movement of
blocks. You may think that you have achieved the effect you want from one point of
view, only to find that it's wrong from another.

Modelling objects with OM is very like modeling with clay or some other material. Of
course when you are making a physical object you see it in 3D. Your hands can feel the
shape and you can get a real feel for the changes you are making. OM does its best to give
you as much visual feedback as possible but on a 2D screen there are bound to be
limitations.

Experience has shown that the best way of expressing a change in the relative position of
blocks is by reference to some part of the object itself. With a 3D object it is not very precise
to say 'move that block a bit to the left'. It's much better to say something like 'slide that block
over that face' or 'lift the block off that face'.

This is the purpose of the face relative tools. They let you specify changes relative to
something you can see (another part of the object) rather than relative to the screen.

Suppose that you have just glued two blocks together with the Unite tool (see chapter
7.1). Unite buts the selected faces of the selected blocks up against one another. OM can't
know exactly where the glued object should go so it puts it in the middle somewhere. You will
probably want to adjust the exact position, perhaps by sliding the blocks over one another or
by raising one above the other. This is where the three face relative tools come in. They
provide the three operations you will need to get the position and angle of the glued object
exactly right.

To slide one over a face of the other use [^]

To raise or lower one over a face of the other (or normal to it) use []
To rotate one in the plane ofa face of the other use \&\
Of course these tools are useful in many situations, not just after a Unite. They can be used
at any time, whenever you need to move one or more blocks relative to an object.
Before using the face relative tools OM needs to know two things.

• Which blocks to move

• Which face you wish to move relative to; the anchor face.

You indicate which blocks you wish to moveby turning them into a group usingthe | J_
and I - I buttons.

You indicate the anchor face by selecting it using the selection tools. (Note that the
anchor face may be any face, even one on the group you intend to move)

Once you have a group and a face selected you are ready to use the face relative tools.
When you are changing the relative position of groups you will find it easier to judge the

effect of your changes if you frequently alter the attitude of your object with the rotation tool.
Objects come to life when they rotate, and complex shapes become much easier to grasp.

45

X Face relative Slide tool

Purpose
Method

Comments

To move a group parallel to the selected face.
Select a group and an anchor face. Now hold down the left mouse button
over the Slide icon and move the mouse.

Because an object can be in any orientation, the direction of mouse
movement does not always produce movement in quite the same direction on
the screen. Experiment to find the best attitude for your object.

A group of
one block

Selected

face

Figure 7.3.2
Slide tool

Face relative Normal tool

Purpose To move a group normal to the selected face. Normal means at right
angles to.

Method Select a group and an anchor face. Now hold down the left mouse button
over the Normal icon and move the mouse.

46

I

I

A group of
one block

Selected

face

Figure 7.3.3
Normal tool

Face relative Rotation tool

Purpose
Method

Comments

To rotate a group in a plane parallel to the selected face.
Select a group and an anchor face. Now hold down the left mouse button
over the Rotation icon and move the mouse.

Because of the amount of calculation involved, this operation is slower than
most. Move the mouse very gently until you get the feel of the command.

A group of
one block

Figure 7.3.4
Rotation tool

47

Selected

face

Axis relative movement commands
These commands also move and rotate groups, but this time they do so relative to the
plane of the screen. It is best to use these tools in Zoom mode (see Part 1) which allows
you to look at an object head on rather than from one side.

+ XY group displacement

Purpose To move a group parallel to the XY plane.
Method Hold the left button down over this icon and move the mouse left, right, up

and down.

Comments This command is most useful when used in conjunction with the
Alignment tools.

Z group displacement

Purpose To move the group parallel to the Z-axis.
Method Hold the left button down over the \¥\ icon and move the mouse left

and right.
Comments This command is most useful when used in conjunction with the

Alignment tools.

-!- Set rotation centre

Purpose To set a centre for the \3\ tool. The group rotates in a plane parallel to
the screen.

Method Hold the left button down over this icon and move the mouse. A set of

cross hairs will appear and move following the mouse.
Comments This command does not affect the object in any way. It merely sets a

centre for the axis relative Rotation tool.

Don't get confused between this tool and the centre I//o I tool in part
7.1. The centre set with this tool only applies to the Axis relative rotation
tool below.

Axis relative rotation tool

Purpose To rotate a group in a plane parallel to the screen using the centre of
rotation set with the set centre tool above.

48

Method Select a centre with the set centre tool, then hold down the left mouse
button over this tool and move the mouse, left and right.

Comments Because of the amount of calculation involved, this operation is slower
than most. Move the mouse very gently until you get the feel of the
command.

The symmetry tools
The purpose of these tools is to invert a group either vertically or horizontally. They do
not make groups symmetrical. That can be done in other ways. A typical use for the
symmetry tools is to make objects where the block(s) on one side are a mirror image of
those on the other, like the wings of an aeroplane. A second use of the command
undoes the effect of the first.

+ Vertical symmetry tool

Purpose To turn a group into a mirror image of itself in the vertical direction.
Method With a group selected, click on this icon.
Comments This command is most useful when used in conjunction with the

alignment tools.

*

Figure 7.3.5
Vertical Symmetry

Horizontal symmetry tool

Purpose To turn a group into a lateral mirror image of itself.
Method With a group selected, click on this icon.
Comments This command is most useful when used in conjunction with the

alignment tools.

49

Figure 7.3.6
Horizontal Symmetry

Stretching tools
Sometimes the best way to shape a block or a group of blocks is to stretch it either
vertically or horizontally. This is the easiest way of making regular six-sided figures and
certain sorts of pyramids. It works well when the object is stretched along a main axis. If
you stretch a group at an arbitrary attitude you will often get very odd effects which are
difficult to correct accurately.

Another sort of stretching tool is the Sizing tool (see below). This stretches along all
axes simultaneously, which is the same thing as making it larger. The Stretching tools
work both ways, that is by moving the mouse from right to left you can compress as well
as stretch.

Compressing an object or making it smaller with the Sizing tool has a side effect
which can alter the shape of your object. Suppose you have an eight-pointed block 100
X 100 X 30. Now imagine making the object a quarter of its original size with the Sizing
tool. The dimensions will now be 25 X. 25 X 7.5. Since OM works in integer arithmetic
(this makes it much faster) the 7.5 would be rounded down to 7.0.

Now imagine using the sizing tool again to bring the block back to its original size,
that is, multiplying each dimension by 4. You would now have a block 100 X 100 X 28,
not quite the original shape. You will only get this effect if you make the object smaller,
let go of the mouse button and then make it larger as a separate operation. While you
hold the button down OM works from the original coordinates.

Warning: OM will let you compress a group to nothing and then beyond. If you do this
you create a very strange object that has no analog in reality. One property of such
inside out objects is that the laws of perspective are reversed. The parts which are
ostensibly further away look larger than the closer ones. What is really happening is that
the faces that OM draws are actually the faces that would be hidden in an ordinary
object. By all means use this effect if you wish; it can be stomach curdling, but expect
the unexpected.

50

E Horizontal stretching tool

Purpose To stretch a group along the x-axis.
Method Hold the left button down over this icon. Move the mouse to the right to

stretch, to the left to compress.
Comments This command is most useful when used in conjunction with the

Alignment tools.

Vertical stretching tool

Purpose To stretch a group along the y-axis.
Method Hold the left button down over this icon. Move the mouse to the right to

stretch, to the left to compress.
Comments This command is most useful when used in conjunction with the

Alignment tools.

Sizing

© The 3 axis stretching or sizing tool

To make a group larger or smaller.
Hold the left button down over this icon. Move the mouse to the right to
stretch, to the left to compress. Pressing the right mouse button will
explode all groups out from the centre.

Purpose
Method

Aligning groups
The Alignment tools are not exclusively group tools. If no group is defined they align the
whole object on the selected work shelf as described in Part 1. If a group is defined,
these three tools will operate on the group only. The main use for this is in lining up
blocks or groups of blocks to make them fit together.

Suppose you have an object in which there are blocks that you wish to butt up
against one another, or in which you want to make the faces of two blocks parallel.
Usually you will achieve this by gluing blocks together with the Unite tool. On occasion
though, you may want to do so without splitting up the object and regluing.

You can do so by selecting the blocks in turn as groups and aligning them separately
against one or other of the axis pairs using the Align tools. There are many useful
variants of this method, for example placing groups of blocks at right angles to one
another. For a description of the Aligning tools see Part 1 of this chapter.

51

Copying and deleting groups
The copy and delete block tools as described under Primary Commands may also be
used to copy and delete groups as follows.

••*•

Purpose
Method

Comments

9P

Copy group tool

To copy a group of blocks to another shelf.
With a group selected, click first on the source shelf and then on the
destination shelf.

Then click on the copy tool button with the right mouse button.
The blocks comprising the group will be copied just as they were in the
original object. The resulting object will be displayed unrotated, in its base
attitude. If you want to preserve the current attitude, click on the Rotation
tool with the right mouse button first.

Delete group tool

Purpose To delete a group of blocks.
Method With a group selected, click on the icon with the right mouse button.

52

7.4: Surface detail
OM's surface detail feature is one of its most powerful facilities. With it you can not only
add pictures to the faces of your objects, you can also add transparencies which allow
you to place windows and holes in objects. With judiciously placed surface detail you
can turn even a single block into a complex structure.

Many of the example 3D objects use this technique to create highly complex looking
objects from three or four blocks. Surface detail is fast too. You can achieve much
greater speed with decorated objects than you could by using lots of blocks. If the
feature is used effectively the resulting objects can look as if they contain dozens of
basic shapes.

• • <

—=*"—^ \—

".' L e

\% m
~""--.'l.-"'

1 1

T
^ =!•- 'F

— X J>
i, r X

:—: r._ * X

Figure 7.4.1
Surface detail icons

OM is brought into surface editing mode with the large surface detail button. The object
on the left work shelf is selected for surface editing and a square editing grid appears to
the right. Most of the regular OM controls remain active and an additional set, to the
lower right of the panel becomes active.

In the following it is assumed that surface detail mode has been selected.

Component selection
When the faces of objects are selected using the face selection tool, OM places what is
actually a simple surface detail on the selected face and suppresses all other surface
detail. During surface detail editing it is not appropriate to highlight selected faces in this
way and the alternative highlighting method is used instead (see figure 7.2.2).

In this mode, which is automatically selected during surface detail editing, selected
faces are shown by means of a faint dotted outline. The simplest way of decorating a
face is as follows:

• Select the face you wish to decorate
• Draw a design consisting of closed edges on the editing window

53

• Click on the |JjJ icon to attach your pictureto the face.

There are many variants of this procedure as you will appreciate when you understand
the function of the controls in the surface detail panel box.

Closed edges
Surface details consist of filled shapes. When you design a surface you do so by
outlining shapes on the editing grid. Because OM fills your shapes when it attaches
them to faces, your line drawings must not contain gaps where the colour can leak out.
OM will not attach a surface that contains unclosed edges. Closed edges must be drawn
with lines of the same colour.

Drawing on the editing grid
In the following we refer to the tools in the surface editing box to the lower right of the
panel. The first three icons in the box are virtual colour selectors. These are not colours
in the ordinary sense. The effect of a given virtual colour on a face will vary according to
the 'background' face colour. Shapes of different colours can overlap and there is a wide
range of possible effects. One of the virtual colours will yield a transparent area. The
other two will produce colours taken from the colours on the other faces of the same
block. The best way to find out how a given virtual colour behaves in a particular
situation is to experiment. Once you have selected a virtual colour, you can draw lines
between grid intersection points as follows:

• Place the pointer over the grid intersection where the line is to start
• Hold the left button down and move to the the part of the grid where the line is to end
• Release the left button

• Repeat the process until you have enclosed an area.

Attaching a surface to a face
This is easy. Simply click on the [^] icon. Your drawing will be filled andattached tothe
selected face of the object on the left work shelf.

Surface complexity
When you attach a new surface to a face OM displays the following message:

Surface Complexity N

where N is a number. This number is a measure of the amount of work that 3D has to do

every time it draws the surface. Low numbers mean little work and high numbers mean
more. The complexity number can be a useful guide to the speed of your object and
hence that of any program containing it.

Complexity is not related only to the number of lines or points in a surface and
relatively small changes to a surface can often significantly reduce its complexity.

54

Positioning the surface
Surfaces can be added to any face but see below for special discussion of flat blocks. In
the case of a four-pointed face, it is easy to see how the drawing on the grid is mapped
onto the face. It is as if the grid were made of elastic and simply stretched over the face.

Figure 7.4.2
Stretching a surface over a 4 point face

Whatever the shape of the face, the design will be stretched to fit. When you click on the
transfer icon OM uses the four corners of the face as anchor points and attaches one
corner of the grid to each. Because of this there are four possible orientations for the
design. You can cycle through these by clicking on the [5] icon.

When you attach a surface to a three-pointed face things are not so simple because
there is a point left over. What OM actually does is to attach two corners of the grid, the
top left and the top right, to a single point of the face. This distorts the design. A square
for example turns into a triangle. With a little practice you will learn how to compensate
for this distortion when you design your surface.

55

Figure 7.4.3
Stretching a surface over a 3 point face

This is easier than it sounds. It is a simple matter to modify a surface until you achieve
the effect you want. When you use the orientation tool, the surface rotates as before, but
this time there are only three positions. Whatever the position, it is always the top
corners of the grid that are collapsed into a single point.

Attaching surfaces to 2D (flat) blocks

Figure 7.4.4
Stretching a surface over a 2D face

The two faces of a 2D block can be selected like any other face but in this case the face is
not highlighted. The reason for this is that only one can be visible at a time. When you use
the attach tool for a 2D block, OM chooses which four points to use as anchors. In some
cases you will want to use a different set of anchor points. You can do this as follows:

56

1 Select the face to receive the surface

2 Use the point selector to select the first of the four anchor points
3 Click on the point selector again but this time using the right mouse button. OM will

display a message to confirm that the anchor point has been correctly designated.
4 Repeat steps (2) and (3) until you have nominated all four points. Two of the points

may be the same if required.

Re-using surfaces
Surfaces live in the same folder as your object and have the extensions .3ds. When you
save an object OM automatically saves all its surfaces. You might wonder why surfaces
are not saved as part of objects. The reason is that objects and surfaces exist in a
many-to-many relationship. The same surface can be used many times on the same
object and many times over different objects. An object can have many surfaces. A
single surface can be attached to many objects.

OM never keeps more than one instance of a given surface in memory at the same
time. The same applies to STOS. This means that objects use much less memory than
they otherwise would. You will find that surfaces generally consume very little memory.
They are also very fast.

Copying surfaces between objects and within objects
It is good practice to exploit 3D's ability to use the same surface in many places. The
same surface can look utterly different when it is attached to a different shaped face and
you will also save a lot of memory and disc space (as well as design time).

Suppose you have an object containing a surface that you would like to use again.
Proceed as follows:

Copy your new object to one of the User shelves. Now load the object containing the
surface you wish to use and select the face sporting the surface. Next select surface detail
editing mode and click on 2j tocopy the surface to the editing grid. Finally, copy thenew
object to theleft work shelf, select theface and click on ^\ to mount thesurface.

The surface toolbox
When you enter surface detail mode by clicking on the large icon, the tools in the
surface toolbox become active. As follows:

10 E0 30 Line colour selection/
colour flip tools

Left mouse button

These are double commands.

57

Purpose
Method

These buttons select the virtual colour of the lines drawn into the editing grid.
Click on one of the buttons

l[jj[selects virtual colour 1

Eg]| selects virtual colour 2

3@| selects virtual colour 3

Right mouse button
Purpose To swap the virtual colours of lines already on the editing grid.
Method Click with the right button on one of the three icons.

|lg| swaps virtual colours 2and 3

|E0l swaps virtual colours 1and 3

swaps virtual colours 1 and 2

Comments As mentioned above, a shape drawn with a particular line colour on the
editing grid will produce an effect on the target face which depends on the
block colours. Sometimes you will find that this is not the effect you want.
Instead of changing the virtual colour of every line on the grid, use these
tools, swapping colours until you have the effect you want.

I—I l-X-l Line editing selectors

Purpose

Method

To cause subsequent lines drawn into the editing grid to be added to the
detail or deleted from it.

To draw new lines click on the 0 button. To delete existing lines click on
the [*] button.They remain in
force until a new mode is selected.

Transfer tool

Purpose To add the detail on the editing grid to the selected face of the object.
Method Select a face. Click on the icon.

58

Comments This tool checks to ensure that the edges formed by the lines on the
editing grid are closed. Each closed edge must be built out of lines of the
same colour. If the edges are not closed OM will display a message and
leave the target face unchanged.

Edit tool

Purpose To transfer the detail on the selected face of the object to the editing grid.
Method Select a face of the object containing a surface detail. Click on the icon.
Comments Some combinations of block colours and virtual surface line colours are

incompatible. In such circumstances, no surface will be visible.

5 Surface attitude tool

Purpose To rotate the surface on the selected face in jumps of approximately a
right angle.

Method Select a face sporting a surface detail. Click on the icon.

* Grid clear tool

Purpose
Method

To clear the surface detail editing grid (but not the selected face).
Click on the icon.

Surface removal tool

Purpose To remove a surface detail from the selected face (but not from the
editing grid).

Method Select a face. Click on the icon.

Line Undo tool

Purpose To delete the last drawn line(s) from the editing grid.
Method Click on the icon.

Quit Surface detail tool

To end a surface editing session. This button removes the surface toolbox
and grid, ending the surface editing session.

Purpose

59

8: 3D Programming

The objects you create in OM come to life when they are brought under program control
with the STOS 3D extension. We suggest you read this chapter in the order it is
presented so that you approach your programming in the correct way. You must first
understand how the 3D world works, this will make using the commands easier. Refer to
the glossary for more explanation of unfamiliar words.

8.1: The 3D World

Introduction

In this section we introduce the basics of 3D programming. 3D graphics has a reputation
for being difficult. We hope you'll agree with us that actually it's no harder than working
with sprites and backgrounds. In STOS 3D we have provided a set of commands that
give you the power of 3D without all the maths and bit crunching. With 3D you can
concentrate on writing programs and let us take care of the details.

To get the best out of 3D though, you will need to know some geometry. We start
with some basic concepts and a little terminology.

The programs TDSIMPLE.BAS, TDLOOP.BAS and VIEW.BAS which are used as
examples throughout this manual can be found on the STOS 3D disc you prepared
during the installation procedure.

Space
Most people know how to read a graph. It has two axes (Figure 8.1.1), the x-axis and the
y-axis. The point where the axes meet is called the origin. The two axes, which are
marked with a scale, allow you to identify any point on the graph.

Any point can be reached by starting at the origin, travelling a distance along the x-
axis and then another distance at right angles, parallel to the y-axis. These two
distances are called the x and y coordinates of the point. They are written (x,y). Figure
8.1.1 shows a few points with their coordinates marked (notice that some of the
coordinates are negative). A graph like the one in Figure 8.1.1 is an example of a
coordinate system.

01

Y AXIS

30

(-20, 20) • 20 • (20, 20)

10 • (20, 10)

-30 -20 -10 10

-10

20 30

(-10,-20) • •20

-30 • (30,-30)

Figure 8.1.1

If you have programmed any 2D graphics you will have used a coordinate system, the
screen coordinate system or simply screen coordinates. Often, screen coordinates have
the origin in the top left corner with the y-axis increasing down the screen. This is
appropriate because of the way screen memory is laid out (see Figure 8.1.2).

r XAXIS ~~"N

r ;Y AXIS 1

1
*)

,--""

INCREASING MEMORY

L

XAXIS

J
, -''

' J

Figure 8.1.2 Figure 8.1.3

In 3D graphics we use a screen coordinate system too, the one shown in Figure 8.1.3.
Notice that the origin is roughly in the centre, with x and y axes that go negative as well
as positive. Notice also that the y-axis increases in the upward direction like the
conventional graph of Figure 8.1.1.

2D coordinate systems like Figure 8.1.3 are fine for flat pictures. For 3D though we
need something more to represent depth; an extra dimension. We call this dimension
the Z dimension and we measure it as you would expect, along the z-axis.

62

We now come to our first problem. How do we draw a 3D graph on two dimensional
paper? Well the answer is that we can't. To draw properly in 3D we would need to draw
inside a tank, perhaps filled with treacle. The best we can do on a flat page is to make a
perspective drawing of a 3D graph, like the one in Figure 8.1.4. As you will see, this 3D
coordinate system is exactly like our 2D graph, except that it has one more axis. This is
zero at the origin and increases as you travel into the distance. In the other direction, out
of the paper, the z-axis becomes negative.

YAXIS

ZAXIS

,,-^

XAXIS

Figure 8.1.4

With this 3D coordinate system we have a way of naming any point in space. To do so
we use three numbers: x, y and z, written (x,y,z). Now look at Figure 8.1.5. This shows a
3D coordinate system with a cube at its centre.

C

YAXIS

ZAXIS

B jf

D S^\' "a>& ^
\y

200 I

i \

o •
o
CM XAXIS

F

.-'' H E

Figure 8.1.5

m

The cube is 200 units on each side and the eight corners or vertices of the cube are
marked with letters of the alphabet. Can you work out the 3D coordinates of the
vertices? The answers are:

A=(100,100,-100)
B=(100,100,100)
C=(-100,100,100)
D=(-100,100,-100)
E=(100,-100,-100)
F=(100,-100,100)
G=(-100,-100,100)
H=(-100,-100,-100)

This coordinate system is called the world coordinate system. It is where we build our
3D world. We look at this world through a window, the computer screen.

We are now ready to look at a simple 3D program. Load the program
TDSIMPLE.BAS.

Now run the program. You should see something like Figure 8.1.6.

Figure 8.1.6

Setting up a moving 3D display
The TDSIMPLE.BAS program can easily be turned into a loop that constantly redraws
the disc and swaps screens. To see any change though you would need to move or
rotate the object in between frames.

Load the program TDLOOP.BAS. This is the basic redraw loop used to create a
moving display. The REM statement tells you where to move your object(s). If you run
this program now all you will see is a disc in the middle of the screen. Press Control-C
and the undo key twice to quit the endless display loop.

M

Angles
In 3D you can rotate objects about each of the axes x,y and z. The commands that do
this rotate objects not about the world axes but about a set of axes based on the centre
of the object. This local coordinate system is a little like the local coordinate system
described below. For now, imagine that our disc is like the cube in Figure 8.1.5 sitting in
the middle of its coordinate system. You can rotate about the x-axis, the y-axis and the
z-axis. We call these angles A,B and C.

The units used to describe angles in 3D are a special sort called VRUs (Voodoo
Rotation Units). They are explained more fully in the sections on Positions and Angles.
VRUs divide up the circle into 65,536 divisions. 90 degrees for example is the same as
16384 VRUs.

Let's add a statement to the TDLOOP.BAS program to rotate the disc about the x-
axis. Now, add the following lines.

110 Td ANGLE 1,A,0,0
120 A=A+1000

Ifyou run the program now you will see the disc rotate. The four parameters following Td
ANGLE are the object number (as defined in the Td OBJECT command) and then the
three angles A, B and C. The program works by increasing A by 1000 each time the
object is displayed.

At this stage you should be ready to try some of the other movement and angle
commands. Try replacing the Td ANGLE command above with other commands such
as Td MOVE. You will find the Td commands quite like the Sprite commands. The only
real difference is that there is an extra dimension.

One problem you will probably encounter is that of losing objects. 3D space is big,
much bigger than a 2D screen. In 3D space it's easy to lose objects, and, as you will find
out, just as easy to get lost yourself! Consequently it is important to limit the distances
you work with. We will be saying more about this later on.

65

The local coordinate system
So far we have described the basic coordinate system used in 3D graphics: the world
coordinate system. Now we must learn about one more: the local coordinate system. To
see why we need another coordinate system let's consider a typical example. Suppose
you're in the cockpit of the fighter aircraft A in Figure 8.1.7. An enemy plane B comes
into view. You line it up in your sights and fire.

WORLD Y

X % 1
1 \

WORLD Z

A j~^K

^y MISSION

\~J LU
>

Q:

4 CONTROL

CO

WORLD X

.***

Figure 8.1.7

Let's relate that to our world coordinate system. Each of the objects, your plane and the
enemy, will have a position (x,y,z). We might imagine a missile firing system which takes
both sets of coordinates and computes a path. This would be very inconvenient. Instead
it would be better to tell our missile system something like: target straight ahead, range
15 miles. This also fixes the missile's position, but in a more appropriate way.

When we look through our sights we are in fact using a coordinate system, but this
system is based around our position. Its origin is our craft and its z-axis is a line pointing
straight ahead. The x and y axes are the same as the sighting lines on our sights.
Obviously this is a much better coordinate system so far as you are concerned. (Of
course mission control on the ground might prefer to think in terms of world co-ordinates;
your local coordinate system has little meaning for them).

This new system is called the local coordinate system and it is worth noting that the
coordinates of the same point in world coordinates and in local coordinates may bare
little relation to one another. Your plane may be pointing anywhere. Your z-axis could be
pointing in the same direction as the world x-axis, or if you are in the middle of a nose
dive, your z-axis would be pointing in the same direction as the world's y-axis. In many
situations the local system will be pointing at a crazy angle.

The viewpoint
In STOS 3D you can define up to 20 objects at different positions in world coordinates.
One of those objects, object 0 is special; it is your own viewpoint. You can move your

66

viewpoint around just like any other object. Whatever it sees you see.
Let's try another example. Load the program VIEW.BAS. This program lets you fly

around the 3D world using the mouse. Movement in this demo is controlled as follows:

Mouse up/down Fly forwards and backwards in the directions you're
pointing

Mouse left/right Turn on a point either left or right
Mouseup/down ,, . ,, ... ,H,t , .. Moves you up and down
holding left mouse button
Right mouse button Faces you directly at the spinning disc. Useful if you

get lost or confused!

Try running the program. You should be able to swing the viewpoint round by moving the
mouse from side to side and zoom in on the disc by moving the mouse away from you.
We sometimes use a special name for the local co-ordinate system based on the
viewpoint; we call it the observer co-ordinate system or just observer co-ordinates.

As you get more advanced you will find that there are many interesting things that
you can do with the viewpoint. For example you can have two viewpoints by changing
object zero's position and generating two separate views of the same world at the same
time. See VIEW2.BAS.

Choosing the best coordinate system
Much of the time you will be dealing in world coordinates. The positions of objects are
defined using this system and in many programs these are all you will need except for
controlling the viewpoint. Local coordinates become useful when you want to make
something happen at some position relative to the viewpoint or another object.

To make a 3D shoot'em-up interesting it is best to make sure that attacking ships
appear from the direction that the player is looking. You might decide to make a ship
attack from a point straight ahead, say at (0,0,10000) in local co-ordinates. You would
convert to world co-ordinates and then use Td OBJECT.

3D provides a family of commands to do all the conversions you need. You can
convert from world to local (Td VIEW), local to world (Td WORLD) and even world to
screen coordinates. In fact 3D allows you to convert to and from the coordinate system
of any object, not just the viewpoint. When you use Td WORLD or Td VIEW you can
specify the object number of any object, not just object zero.

Now that you understand co-ordinate systems you are all set to read the next
section, the STOS commands. At Mandarin and at Voodoo we have been really
impressed with the creativity of STOS users. We are expecting to see some fantastic 3D
programs. Please take the trouble to send us your creations. Good luck!

67

8.2: The STOS commands
STOS 3D provides a comprehensive set of commands for handling the 3D objects either
from the example object library or created by Object Modeller (OM). All the commands
begin with the letters Td.

Positions
All distances are measured in VLUs (Voodoo length units). VLUs do not correspond to
any particular physical length. But to give you an idea of scale, a typical object might be
500 to 2000 VLUs across. The standard cube in OM is 360 VLUs on each side.

Objects can be positioned and moved anywhere within a box of 16,000,000
VLUs square. The box is centred around the world coordinate origin (0,0,0) and so
the most distant object from the origin would not be further away than
(8000000,8000000,8000000). In practice it is best to keep objects quite close to the
world origin. If your program uses objects that are fixed in world coordinates this is the
natural thing to do.

If you are working with objects which are all moving, the size of the world need not
prevent you from writing programs in which you appear to travel for enormous distances.
In this kind of 3D work it is usual to normalise all positions every few hundred frames. To
do this you simply subtract the coordinates of the viewpoint (object 0) from all the objects
(including object 0). This simply moves the whole scene to a new location and has no
visual effect at all. It merely keeps the numbers manageable. You will find that when you
are free to roam in 3D space the numbers can get out of hand quite quickly!

Angles
These are measured in VRUs or Voodoo Rotation Units. The reason we don't use more

normal units such as degrees or radians is to allow fine accuracy while at the same time
keeping all numbers in integer form. Decimal (or floating point) numbers are much
slower to work with and 3D graphics needs to be fast.

One complete circle (or 360 degrees) is 65536 VRUs. This may seem a funny
number but it's not. It is the largest number that can be held in one word of memory. The
following formulae convert from VRUs to degrees and back again:

To convert degrees to VRUs: multiply by 182

To convert VRUs to degrees: divide by 182

To specify a direction in 3D space you need at least two angles. To specify an object's
attitude (including object 0, the viewpoint) completely, you need three angles. These
describe rotation about the X, Y and Z axes. We denote these three angles by the letters
A, B and C.

For example to place an object in the world at (1000,2000,3000) pointing straight up
we would use:

Td OBJECT 1,"object-name",1000,2000,3000,16384,0,0

68

The first parameter is the object number, the second is its name. The next three are its
x, y and z coordinates and the last three are its angles, A, B and C.

Objects
Objects are created using Object Modeller (OM). The data stored when you save an
object under OM is called an Object Definition. Object definitions are packed tight to
save space. When you use the Td commands to display an object, 3D uses the object
definition to create a new structure in memory called an Object Instance. It is this
structure that you address when you use all the other Td commands.

An object instance is a version of the object optimised for speed. You can have
several object instances for a single object definition. For example, suppose you design
a 3D missile. You will probably want to be able to display more than one missile at a
time. To do so you only need load the missile once. After that you can create as many
instances as you wish. These are quite independent of each other, but they are all
based on the same object definition.

The command that loads an object is Td LOAD. The command that creates the
instance is Td OBJECT. When you create an instance you give it an object number.
After that, you always refer to the object by its number. This gives you a unique way of
addressing different instances of the same object. An object number can be any number
you choose between 1 and 20. Object 0 is the viewpoint.

The display
The view from the viewpoint (object 0) can be displayed on a 16 colour screen up to 200
lines high, see the end of this section for more information on object colours.
Any 3D objects that you define will be drawn only when you use the Td REDRAW
command. When choosing a screen height, bare in mind that this will affect the speed of
the 3D system. Bigger screens mean slower graphics although in many situations there
may not be a very great difference.

Td SCREEN HEIGHT (Setthe screen height for 3Ddrawing)

Td SCREEN HEIGHT n

Example:

Td SCREEN HEIGHT 130

n is in raster lines.

The Redraw loop
All 3D programs contain a redraw loop. This is a sequence of instructions which sets up
a display and repeatedly redraws all objects.

69

Td REDRAW (Drawall current visible 3Dobjects)

Td REDRAW screen address (usually logic)

Example:

Td REDRAW Logic

This draws all current visible 3D objects and any background. You must explicitly tell 3D
to refresh the display. All your calculations and object movements must be done in a
loop. Here is a typical sequence of instructions for setting up a moving display:

10 Rem Redraw Loop
20 Logic = Back
30 Repeat

40 Rem Doall your calculations and object positioning here
50 Wait Vbl: Rem This command is optional
60 TdCLS Logic
70 Td Redraw Logic
80 Rem You can draw on top of the 3D objects here
90 Screen Swap

100 Until False

The Wait Vbl command is sometimes required to prevent flicker in simple programs. You
will find that in programs with several objects the Wait Vbl can be dispensed with.

Td CLS (Clear the 3D display area with extra speed)

Td CLS screen address (usually logic)

Example:

Td CLS Logic

This command is a fast screen clear for the part of the current screen specified in Td
Screen Height. If required you can use this command to avoid erasing any 2D graphics
(such as a control panel) below the 3D display.

Loading and removing objects
3D objects, even simple ones, are complex structures. They contain much more than a
simple list of points. The structure of an object is described in appendix B but here we
must mention that each object is built up from up to three types of disc file: Object,
template and surface. The only one of these files that you need to know about is the
object file.

3D will load any other files as necessary. The only reason we mention this here is
that 3D must know where to find all the files. By default they are held in the directory
objects which must be in the current directory.

70

If you wish to change the name or location of your object directory use the Td DIR
command.

Td DIR (Set the object directory name)

Td DIR folder$

This tells 3D to look in folder$ for object files. Naturally the string must be a valid
pathname.

Example:

Td DIR "0BJECTS2"

Tells 3D to look for its objects in the directory OBJECTS2, on the current drive.
If you use the STOS compiler you will need to know about another file called

C3D.PRG. This is the 3D run-time library and contains most of the graphics system. If
you distribute compiled programs to your friend the root directory of your disc must
contain C3D.PRG or 3D will not work.

Td LOAD (Load the named object)

Td LOAD file$

Loads the named object. The name should be the same as the one you chose when you
designed the object. This command only loads the object. Nothing is displayed. To
display a loaded object use Td OBJECT and Td Redraw.

Note that although you supply a single name, 3D may load several files. This is
completely automatic. See appendix B for an explanation of the different file types.

Td CLEAR ALL (Remove any loaded objects)

Td CLEAR ALL

Removes any instances of the loaded objects, then removes all the objects. If you have
been loading many objects and are no longer using some of them, use this command
and reload the ones you need. This will ensure that the maximum amount of memory is
free.

Note the difference between Td CLEAR ALL and simply using Td KILL to kill all the
object instances. The latter command does not remove the object definitions.

71

Invoking objects

Td OBJECT (Create anobject)

Td OBJECT n,name,x,y,z,A,B,C

Creates an object instance based on a previously loaded object definition. You choose a
number n between 1 and 20 to refer to the object instance. You also supply details of its
starting position and attitude.

n the object number (between 1 and 20, your choice)
name the name of the object
x,y,z the world coordinates of the object's starting position
A,B,C the attitude of the object (see Angles above)

No objects will be drawn until you execute the Td REDRAW command. Remember that
object zero is the viewpoint.

Td KILL (Remove an object)

Td KILL n

Removes an object instance, n is the object number supplied when the instance was
created using Td OBJECT. This command only removes the instance, not the object
definition. To remove all instances and all object definitions use Td CLEAR ALL.

Object movement commands
There are two basic ways of moving an object. You can either place an object at an
absolute location in world coordinates or you can specify a change in its position. Aside
from Td OBJECT which sets an object's initial position, there is only one command to
set absolute coordinates, Td MOVE. The remainder of the movement commands are
object relative.

For example Td MOVE REL lets you specify a change to be made to an object's
current position. This change would be made every time the command was executed.
The alternative form of Td MOVE uses the same type of movement string as the ones
used to move sprites. A full explanation of the MOVE commands can be found on
page 82 in your STOS manual.

Like the STOS sprite commands many of the Td movement commands work on one
coordinate at a time. When you use sprites you supply one movement for the x direction
and one for y. In 3D work there is an extra dimension z so you will usually need a
command for x,y and z.

Td MOVE (Move an object)

Td MOVE n,x,y,z

72

This moves object nto the absolute position (x,y,z) in world coordinates.

Example:

Td Move 4,100,100,3000

Td MOVE REL (Move an object relative toits current position)

Td MOVE REL n,dx,dy,dz

This command operates in a similar fashion to Td Move. The movement it applies
though, is relative to the object's current position. For example:

Td Move Rel 2,0,100,0

This will move object 2 a hundred VLUs upwards. If the same command is executed
again the object will move another 100 VLUs. If you place a command like this in your
main redraw loop (see above) it will have the effect of moving the object in the y
direction with a constant speed. Of course the object would only move up the screen if
your viewpoint is behind it and pointing in the (0,0,0) direction. If your viewpoint is above
for example and you are looking down onto the object it will appear to be coming straight
at you.

Td FORWARD (Move an object forwards)

Td FORWARD n,d

This moves object n forward d VLUs each time it is executed. If you place a Td
FORWARD command in your main object loop, object n will move forward with constant
speed. The direction forward is the direction that the object is pointing. When you design
an object using OM, you should save it front forward, pointing straight at you. The
attitude of an object when it is saved defines the forward direction.

Td FORWARD can be very useful. Because it always moves an object in the
direction it is pointing, you can make objects execute smooth turns simply by changing
the attitude gradually using Td ANGLE or Td ANGLE REL.

Reading an object's position

=Td POSITION (Return an object's world coordinate)
=Td POSITION X(n)
=Td POSITION Y(n)
=Td POSITION Z(n)

Td POSITION is a function. You supply an object number (the one you supplied in Td
OBJECT) and Td POSITION returns a world coordinate, x,y or z.

73

Which coordinate the function returns depends on which form you use. Although Td
POSITION returns world coordinates you can easily convert these to local coordinates
using Td VIEW.

Changing the attitude of objects
The attitude of an object is the direction in which it is pointing. If you want an object to
rotate smoothly, simply change its attitude at a constant rate. The Angle commands are
very like the Movement commands and follow the same syntax. The only difference is
that instead of changing x, y and z, the Angle commands change the rotations about x, y
and z. We use the letters A, B and C to denote these angles.

There are two basic ways of rotating an object. You can either place an object at an
absolute attitude or you can specify a change in its attitude. Aside from Td OBJECT
which sets an object's initial attitude, there is only one command to set its absolute
attitude, Td ANGLE. The remainder of the angle commands are object relative.

For example Td ANGLE REL lets you specify a change to be made to an object's
current attitude. This change would be made every time the command was executed.
The alternative form of Td ANGLE uses the same type of movement string as the ones
used to move sprites, although these change an object's attitude not its position. If you
are unfamiliar with movement strings, consult page 79 of your STOS manual.

Td ANGLE (Set an object's attitude)

There are two forms of this command:

Td ANGLE n,a,b,c

This gives object n the attitude (a,b,c) where:

n is the object number supplied in Td OBJECT
a is the angle made with the world x axis
b is the angle made with the world y axis
c is the angle made with the world z axis

Td ANGLE REL (Change an object's current attitude)

Td ANGEL REL n,dA,dB,dC

This command changes an object's current attitude by dA, dB and dC. If you place this
command in your main redraw loop the object will rotate smoothly.

Reading an object's attitude

=Td ATTITUDE (Return an object's attitude)
=Td ATTITUDE A(n)
=Td ATTITUDE B(n)
=Td ATTITUDE C(n)

74

Td ATTITUDE is a function. You supply an object number n (the one you supplied in Td
OBJECT) and Td ATTITUDE returns an angle A,B or C. The angle the function returns
depends on which form you use.

String Commands
Objects can be moved and rotated using string commands similar to those available to
STOS sprites. Consult your STOS manual for the syntax of these strings. One thing to
note about the 3D string commands is that, unlike sprites, it is inappropriate to change
the positions and angles of objects under interrupts. The 3D string commands change
the positions and angles of objects every time Td Redraw is called.

Td MOVE (Setup ananimation movement string)

Td MOVE X n.string
Td MOVE Y n.string
Td MOVE Z n.string

This acts on object n and applies the movement command in string. The movement
string follows the same rules as those for sprites. There is a separate command for x, y
and z.

Example:

Td Object 1,"cube",0,0.2000,10000,10000,10000
Td Move Z1,"(1,-100,18)(1,100,18)L"
Rem Place your redraw loop here

Td ANGLE (Setup anangle animation string)

Td ANGLE A n.angleS
Td ANGLE B n,angle$
Td ANGLE C n,angle$

Like Td MOVE, there is a separate command for A, B and C. Td ANGLE applies the
changes specified by the movement string angle$ to either A, B or C.

Bearing and range
In a good deal of 3D work it is necessary to know the bearing and/or range between one
point in space and another. The points might be the centre of an object, the viewpoint or
something else.

The bearing of one point from another is the direction of the second point as seen
from the first. The range is the distance between them. For example, suppose you want
to program a fire and forget missile. You will know which object you want to shoot down
and you will know where you want the missile to start. You still need to know which

75

direction to point it in and perhaps how fast to make it travel. The bearing of the target
from the missile's launch position gives you the direction. You might also use the range
(the distance between the two) to calculate a suitable speed for the missile.

To specify a bearing in 3D space you only need two angles, not three. To see why,
imagine yourself on a rotating gun turret. The turret moves like a swivel chair. The angle
of swivel is one of the angles, B. The other angle A is the angle of elevation, that is the
angle between the ground and your line of sight to the target.

Once you have these two angles it's easy to make your missile fly in a path to the
target; just use Td ANGLE A,B,0 and then Td FORWARD.

=Td BEARING (Return a bearing and range)

There are two forms of this function. Each of the forms, returns either A, B or R (the
range), just like Td ATTITUDE. However there is a further refinement that you can use to
save time. Whenever you use one of the forms of the function to return A, B or R, Td
BEARING actually works out all three and remembers the others (It has to do this
because they are all interdependent).

To find out what the others were you simply use Td BEARING again but this time
with a single dummy parameter. In other words Td BEARING A(0) returns A, as it was
the last time Td BEARING was used in full.

The same goes for Td BEARING B and Td BEARING R. The bearing/range
calculation is quite a long one so this is well worth doing. The results A,B and R are also
calculated by the command Td FACE (below). After using Td FACE you can read A,B or
R just as if you had just called Td BEARING.

The first form of this function is:

=Td BEARING A(n1,n2)
=Td BEARING B(n1,n2)
=Td BEARING R(n1,n2)

This returns the bearing/range of object n2 from object n1. Either n1 or n2 can be object
0, the viewpoint.

=Td BEARING A(n,x,y,z)
=Td BEARING B(n,x,y,z)
=Td BEARING R(n,x,y,z)

This returns the bearing/range of the point (x,y,z) in world coordinates from object n.
(Remember that object 0 is the viewpoint).
All bearings can be worked out with just one call to the Td Bearing function. Example:

B1=Td Bearing A(2,3)
B2=Td Bearing B(0)
B3=Td Bearing R(0)

76

=Td RANGE (Return only the range between two objects)

=TdRANGE(n1,n2)

This function just returns the range between two objects n1 and n2, that is the distance
between them. It does not calculate any angles. If you need the range and the bearing
between two objects, use Td BEARING (which calculates both) instead.

Pointing an object

Td FACE (Point an object atanother)

Td FACE is just like Td BEARING. It calculates A, B and R'between two objects (or an
object and a point). However Td FACE also rotates the first object so that it points to the
second object (or point). You can get exactly the same effect as Td FACE by using Td
BEARING to find A and B, and then using Td ANGLE.

There are two forms of the command:

Td FACE n1,n2

This points object n1 at object n2.

Td FACE n,x,y,z

This points object n at the point (x,y,z).

After using Td FACE you can read A,B or R just as if you had just called Td BEARING,
(see Td BEARING)

Converting between coordinate systems
STOS 3D makes use of three coordinate systems. These are:

• The World Coordinate System.
• Local Coordinate Systems.
• The Screen Coordinate System.

In many situations you will find that you need to convert coordinates from one system
into another. For example, suppose you want to make an attacking ship come out of the
distance straight ahead of the player. You will know where you want the ship to appear,
say 10,000 VLUs in front of the viewpoint; ie (0,0,10000) in local coordinates.

However, when you start a new object using Td OBJECT you specify the world
coordinates not the local coordinates. You will need a way of converting between the
two. If you think about this conversion you might come to the conclusion that all you
would need to do is to add the position of the viewpoint (object 0) to (0,0,10000). This
would not be correct because it does not take into account the attitude of the viewpoint.

77

Fortunately 3D provides functions for doing this (as well as other coordinate system
conversions). The conversion functions must be called once for each coordinate x,y and
sometimes z. Like Td BEARING you can leave out the parameters after the first call.
This is faster for the same reasons.

=Td SCREEN (Convert world coordinates to screen coordinates)

=Td SCREEN X(x,y,z)
=Td SCREEN Y(x,y,z)

This takes the coordinates of a point (x,y,z) in world coordinates and converts them to
STOS screen coordinates.

3D will work out both X and Y values automatically when you call one of these
functions. So the quickest way to calculate X and Y is to do the following:

SCX=Td Screen X(10,10,1000)
SCY=Td Screen Y(0)

=Td WORLD (Convert local coordinates to world coordinates)

=Td WORLD X(n,x,y,z)
=Td WORLD Y(n,x,y,z)
=Td WORLD Z(n,x,y,z)

This takes a point (x,y,z) expressed in local coordinates relative to object n and converts
it to world coordinates. The object n does not have to be the viewpoint (object 0). It can
be any object. Because of this you can use Td WORLD to get the world coordinates of
any point as seen from object n's point of view. For example you could use it to write a
routine that makes debris from a ship's engines trail behind it.

As with Td Screen, this command will also generate all X, Y and Z values with just
one call. For example:

ZW=Td World Z(5,x5,y5,z5)
XW=Td World X(0)
YW=Td World Y(0)

=Td VIEW (Convert world coordinates tolocal coordinates)

=TdVIEWX(n,x,y,z)
=Td VIEWY(n,x,y,z)
=Td VIEWZ(n,x,y,z)

This is the opposite of Td WORLD. It takes a point in world coordinates and converts it
to local coordinates, relative to object n. This function is most often used with object
zero, the viewpoint (hense its name). It can be used with any object.

All three values are worked out with a call to any of these functions. For example:

ZV=Td View Z (3,x3,y3,z3)

78

YV=Td View Y(0)
XV=Td View X(0)

Checking an object's visibility
As any graphics programmer knows, speed is all important. In 3D graphics especially
you won't want to waste a microsecond drawing anything not absolutely necessary.

3D objects take a long time to process and it takes some time even for 3D to decide
that an object can't be seen and therefore should not be drawn. The Td VISIBLE
function gives you an easy way of telling whether an object, or any part of it is on screen.
If it's not you may be able to delete it and save 3D time. It is surprisingly easy to leave
objects hanging around after they have served their useful purpose. Don't!

=Td VISIBLE (Return whether an object is visible)
=Td VISIBLE(n)

This function returns 1 if object n is visible and 0 if it's not.

Collision detection and zones
3D collision detection works using zones. A zone is a sphere whose centre is attached

to an object. To set up collision detection between two objects you first use Td SET
ZONE, at least once for each object. Once you have done this you can use Td COLLIDE
to find out whether the two zones have overlapped.

For many purposes a single zone centred on each object is enough. However most
objects do not have a very spherical shape and you may want your collision detection to
be more accurate. For this reason 3D lets you define many zones around each object,
each with its own centre and radius.

If you use several zones you can make a compound zone that hugs the shape of
your object closely. However be warned, 3D collision detection is not easy for 3D to do
and it takes time. The more zones you have the slower your program will run.

Zones are useful for more than just collision detection. Ifyou define a very large zone
around two objects you can use them to detect whether they have come within a certain
range. This can help with strategy routines.

One point to remember when using zones is that 3D can only check the zones once
per frame, that is, once each time you call Td COLLIDE. If your objects are moving so
fast that they pass through one another between one frame and the next, Td COLLIDE
might not register an overlap. Ifyou run into this problem, make your zones bigger.

Don't forget that object 0 is the viewpoint. You can set zones around the viewpoint
just like any other object.

Td SET ZONE (Define a zone)

Td SET ZONE n,zone,x,y,z,r

This command defines a invisible spherical zone around an object.

79

n the object number
x, y,z the position of the centre of the zone.
zone the zone number - 0 for the first zone, 1 for the second and so on.
r the zone radius

Because the zone is defined relative to the object, we use a local coordinate system
centred on the object. To understand this, think of your object as sitting at the centre of a
set of 3D axes. Now choose x, y and z so that the zone surrounds the part of the object
you want to be sensitive to collisions. Ifyou are just setting a single zone for each object,
x, yand z should probably all be zero.

When you rotate an object using one of the Angle commands 3D automatically
rotates the centres of all the zones as well.

=Td COLLIDE (Detect a collision)

This function has two forms:

=TdCOLLIDE(n1,n2)

This tells you whether objects n1 and n2 have collided. If they have the function returns
n2. Otherwise it returns -1.

=Td COLLIDE(n)

This tells you whether any object has collided with object n. If there has been a collision
the function returns the number of the object it collided with. Otherwise it returns -1. If
you have several objects this command is equivalent to calling the first form of Td
COLLIDE once for each object other than object n. Expect it to take longer. It is wasteful
to use this form of the command if some of your objects are nowhere near object n and
therefore won't collide with it. It takes 3D as long to decide that a pair of objects have not
collided as it does to register a collision.

=Td ZONE (Return information about a zone)

=Td ZONE X(n,z) Returns the x coordinate of the zone's centre in world coordinates.
=Td ZONE Y(n,z) Returns the y coordinate of the zone's centre in world coordinates.
=Td ZONE Z(n,z) Returns the z coordinate of the zone's centre in world coordinates.
=Td ZONE R(n,z) Returns the zone's radius

This function returns information about zone z on object n. Td ZONE can be very useful
ifyou want to draw zone circles around objects when you are debugging your program.

Td DELETE ZONE (Remove a previously defined zone)

Td DELETE ZONE on, zn

This command removes zones set up using the Td Set Zone instruction. Ifzn is positive
or zero the command will remove zone number zn from the object number n, if zone

80

number zn does not exist then an STOS error will occur.

If zn is negative 3D will remove all the collision zones from an object. No error will
occur if no zones exist.

Animation
In 3D we use the word animation to mean something that changes the appearance of an
object, not simply movement. 3D provides commands to perform two completely
different types of animation: Shape animation and surface animation.

Shape animation
Shape animation changes the shape of an object by moving one or more of the vertices.
These are the corners of the blocks that make up an object. We will refer to them as points.

When you design an object using OM you can use the Selection tools to select the
points of each block, one after another (in some cases you will need to select a block,
face and line first). When a point is selected you can use the Info tool to display the point
number. You will see something like:

P(3,10)

This tells you that the point you have selected is point 10 (don't worry about the first
number). The most useful command Td ANIM REL lets you grab a point and pull it into a
new position. You don't specify the new position; instead you say how much you would
like it moved.

For example if your object is the pyramid of Figure 6.10, you can pull the top vertex
up a littleby specifying a change of (0,50,0). To pull it left you would use (-50,0,0) and so on.

Of course by using Td ANIM you can end up with some very strange looking objects.
You can also easily produce objects that don't work. For example if you move only a
single point on a cube you will bend at least one of the faces. This will confuse 3D and
you may get unexpected results. OM applies rules to keep faces flat but there are no
such checks on Td ANIM REL. 3D does exactly what you ask, however silly. When you
design an animation it's a good idea to try it out under OM first.

A great many good effects can be obtained by moving all the points in a particular
block. For example you could make a hatch slide open on a spaceship. To do this you
must use the same Td ANIM command for each point.

Td ANIM REL (Apply a change to a point - relative to the points position)
Td ANIM REL n,p,x,y,z,finished_flag

This command applies a change (called a delta) to point p of object n. The change to be
applied is specified by x, y and z. The change is applied to the object as it was saved
under OM. If you have rotated the object in your program Td ANIM REL will rotate the
change too so that the effect on the object is the same.

Often, animation effects involve changing several points. If you are using several Td
ANIM REL commands in one place (or in a loop) you can save 3D time by using
finished_flag. If finished_flag is 0, 3D expects more ANIMs. When finished_flag = 1, 3D

81

assumes that there are no more ANIMs coming and processes all the points together. In
other words, finished_flag should be zero except on the last Td ANIM REL command.
Note that every object has its own finished flag.

Actually, if you are about to change the attitude of the object before the next Td
REDRAW you can keep finished_flag zero even on the last point. This will also save a
little time.

One word of warning: Td ANIM REL is there because we want you to be able to
animate objects. However not everything that you try will work, especially if you are
making big changes to an object. The best way to find out what you can and can't do is
to experiment.

Td ANIM (Apply a change toa point)

Td ANIM n,p,x,y,z,finished_flag

This command moves point number pn in object n to coordinates x,y,z.
The finished_flag parameter is the same as the flag in Td Anim Rel above.

Td ANIM POINT (Return the position ofa point)
=Td ANIM POINT X(n,pn)
=Td ANIM POINT Y(n,pn)
=Td ANIM POINT Z(n,pn)

These three functions return the X, Yand Z coordinates of animation point pn in object n.
Before you animate an object, its points will always be in the position they were in when
the object was saved by OM, regardless of the object's rotation.

X,Y and Z are co-ordinates in the object's local system; they don't change when you
move or rotate the object, only when you change its shape.

Surface animation
Surface animation is much more like the sort of animation you use on sprites. It provides
a way of changing the surface detail on a face, 'on the fly' and under program control. If
you show a sequence of surfaces in quick succession you can give the appearance of
movement.

This feature can be used to create all sorts of interesting effects. For example you
could have a damage surface detail that gets attached to the wing of a ship when it gets
hit with a missile. This could be a transparent shape with a jagged outline, so as to look
as if a hole has been blown in the wing.

Transparent animated surface detail can also be used to open windows or portholes
on objects to reveal something inside. You could also add a horrible grinning face to a
3D creature.

Let's discuss the first example, the damage surface detail. We will suppose that you
have already designed your ship and a suitable damage surface detail to go on the wing.
First of all we will need a way of identifying the face we want to animate. To do this
under OM, select the face using the Face Selection tool and click on the Info icon. You
will see something like:

R:1000B:2F:3

82

This tells us that the face we have selected is face 3 of block 2 (the first number is the
object's radius which we don't need here). Now we know where to put our damage
detail.

The next stage is to store the damage surface away where it can be accessed by
your program. This is done by attaching it to a simple object, say a cube (which can be
used to store up to six surfaces). We will never actually display the cube; we will simply
use it to hold the surface until we need it. When you do this be sure to make a note of
the number of the face holding the surface. Now we can save both objects (the ship and
the cube) and quit OM.

Now back to your 3D program. Obviously you will be loading the ship, but you must
also Td LOAD the cube. Once the cube is loaded the damage surface is accessible to
3D. To attach the damage surface to your ship, use Td SURFACE with the block and
face information you noted earlier. As soon as you do this the surface will appear.

Td S UR FAC E (Copy a surface)
Td SURFACE namel ,b1 ,f1 ,n2,b2,f2,rt

This is the surface copying command.

namel the name of the source object (the one containing the surface to be copied)
b1 the block number within namel

ft the face number within b1

n2 the object number of the destination object
b2 the block number within n2

f2 the face number within b2

rt Rotation angle. Legal values range between 0 and 3.

Notice that the source object is referred to by its name. This allows surfaces to be
copied from objects that are merely loaded, not displayed, so as to save memory. The
destination object is referred to by its object number, the one you choose in the Td
OBJECT command.

Td Surface can be used to do most surface animation, but one additional command
may be needed for flat blocks. If you apply a surface detail to a flat block using Td
Surface, 3D will automatically fix the four surface detail anchor points so that they are
evenly distributed around the block (see the Object Modeller Surface Detail section for
an explanation of surface anchor points). If you want to control which anchor points are
used for surface detail use the command:

Td SURFACE POINTS (Set surface detail anchor points)

Td SURFACE POINTS p0,p1 ,p2,p3

Specifies that point numbers p0,p1,p2,p3 are to be used as anchor points for all future
surface animation on flat blocks. Note that if you specify a point that does not exist in the
block, the error will only be detected when you try to apply the surface using Td Surface.

83

Backgrounds

Td BACKGROUND (Displaying a background)

This command lets you place a background behind all your 3D objects. Backgrounds
come alive with 3D objects in front of them. You can also use this command to create a
landscape or horizon.

Td BACKGROUND bank, offset, screen, X, Y, width, height.

bank bank resaved as screen, contains the background images
offset offset in bytes into the background bank, for multiple or offset images
width width of the image
height height of the image
screen screen to write to x,y screen co-ordinates of the image, can be completely

off-screen

Restrictions:

The byte offset must be even.
The width must be a multiple of 16 pixels

Violation of any of these conditions will result in total destruction of the computer and the
building it is situated in the user being cast into the depths of oblivion for all eternity.
Well, actually, a basic error will be invoked, but the former sounds far more interesting.

The maximum size of an image is 320 x 200. Only data inside a bank resaved as
screen can be used as image data.

Usually you will want to draw backgrounds behind 3D objects, in order to do so use
the Td Background command after the Td Redraw instruction.

If you want to draw an image in front of 3D objects, for example the circular
windscreen of a spaceship, use Td Background before the Td Redraw. The image must
contain only colours 8-15 and 0, you will be able to see your 3D objects where the image
is colour 0.

Background colours
3D draws objects in colours 8-14. Colour 15 is reserved for your special graphics (for
example sights). Background can be drawn in any colours.

If you draw in colours 8-15 before you use Td REDRAW, 3D will place objects behind
and not overwrite your image. In other words, bitplane 3 is used as a mask by 3D. The
same applies to backgrounds.

Display problems
When programming in 3D you may sometimes find that what appears on the screen is
not what you expected. Ifthis happens your problem could be one of the following.

84

Interleaving objects
When you design objects under OM you have the freedom to place blocks wherever you
like. You could have two letter U shapes, made out of eight pointed blocks which fit
inside each other for example. We would say that these shapes are interleaved.

With whole objects this is not possible. Each one must be drawn as a whole by 3D.
They must not be mixed up together. If you are uncertain, there is a simple test that will
tell you whether two objects are interleaved:
Imagine wrapping the objects up tightly in cellophane so that it stretches in flat planes
over all the protruding vertices. If you did this to a letter T for example you would get a
roughly triangular shape. Now ask whether or not the cellophane surrounding the two
objects will touch. If it does the objects are interleaved and you may get unwanted
effects at certain angles.

Object precedence
When you design an object under OM and use the precedence tool to order the blocks,
the modeller prepares all the information necessary to generate correct views of the
object at any attitude. Without this 3D would not know which blocks to draw in front and
which behind (actually 3D has to chop up blocks too sometimes!). This information
depends on the precise position of each block and takes some time to prepare. When
you display several objects under STOS, 3D also calculates the precedence between
whole objects. To keep 3D running fast, a more approximate method is used to order the
objects than the one used to order the blocks within objects. This method is based on
the centre of gravity of each object. If the centre of one object is further away than the
centre of another the first is drawn behind the second.

Remember that the centre of an object is the point about which it rotates. It is also the
handle that you use to position objects using the Td positioning commands.

The centre can be positioned anywhere inside or outside the object by using either
OM's Centring tool or the Group movement tools.

Occasionally you can run into situations where this ordering method produces
incorrect results. Ifyou come across this problem, with an object appearing in front when
it should be behind, consider the positions of the objects' centres. You will probably find
that the object which visually should be in front actually has its centre behind.

You can get around the problem by giving one of the objects a centre position which
guarantees that it will appear behind when it should. Remember that the centre can be
anywhere, outside the object as well as inside.

Screen swapping
In 3D graphics we usually use a double-buffered display. This consists of two screens,
one for showing the graphics and a hidden one where we draw the next frame. Once we
have a new picture, we swap the screens over, displaying the new one and use the old
display screen to prepare the next frame. You don't have to do things this way but it
does give the best results because you never see graphics as they are being drawn.

To do this we use the following program structure:

500 logic = back

85

510 auto back off

520 repeat
530 rem Move your
540 rem objects here !
550 td els logic
560 td redraw logic
570 rem Draw on top
580 rem of 3d here

590 screen swap

600 until false

I

I

I

I

I

Memory |
3D needs about 100K of memory. The basic memory is allocated (if it's not allocated
already) by the first use of a 3D command. This 100K is actually very little for a 3D
system with the power of3D. '

Td INIT

Td Init bytes

bytes = Size of STOS memory bank set aside for 3D.

This command allows you to specify the size of the memory bank reserved for 3D. In the
interpreter version this is set to about 50K but can be changed according to the screen
size, number of objects loaded/used, etc. The bank needs to be at least twice the size
as the screen used for 3D, if the bank is too small then a STOS 'Out of memory' error
will be generated. _

In the interpreter version Td Init is optional, 3D will reserve 50K on the first call to any i
3D command. In the compiler version Td Init MUST be called as the first 3D command.

Td Init can only be used once in a program and, if used, must be the first 3D i
command.

Td ADVANCED (Access to the object structures) I

= Td Advanced n I
Td ADVANCED is provided for advanced programmers who wish to experiment with the
actual 3D object structures in memory. The Td Object command builds such a structure
called an Object Frame for each instance. It contains a basic block of data defining the
instance including a pointer to each block structure known (as the Layers). Td i
ADVANCED can also be used to obtain the base address of 3D's static data area.

If n is zero the function returns the 3D data segment address. Otherwise it returns the
address of the Frame for object n. Needless to say we can't predict the results of
monkeying with the 3D structures.

86

TD PRIORITY (Define order in which objects are drawn)

Td PRIORITY n,p

n - Object number
p - Object drawing priority

This allows you to specify the order in which objects are drawn by the 3D system.
Objects that are drawn first appear in front of other objects.

Priority,p Object drawing order

0 Draw the object in the normal way (by depth)
>0 Draw the object in front of all other objects with a lower priority
<0 Draw the object behind all other objects with a higher priority.

By default all objects have a priority of 0. Note that if two objects have non-zero priority
the one with the highest priority will be drawn first (in front).

TD SET COLOUR (Seta specified object's block colour)

Td Set Colour n,b,c

n - Object number
b- Block number

c - Colour combination code of the block (same as in OM)

This instruction sets the colour combination code of the specified block.
Valid colour numbers range from 0 to 15, colour combinations 0 to 9 are the same as in
OM, colour combinations 10- 15 are new. An out of range colour code will be truncated
to the nearest valid code without causing an error.

87

C
D

C
O

9: Hints & Tips
This section contains advice on 3D programming and how to make the most of the OM
and TD commands. The information contained here will help you to make your 3D
programs fast and to keep them interesting. Some of the topics covered are quite
advanced and will not concern everybody. It is not hard to create interesting demos and
games using 3D but of course, to mimic the best 3D games takes patience and
experience.

Speed
Good 3D graphics should be as fast as possible. Regardless of whether your application
is actually a fast moving arcade game or not you should do everything you can to keep
the frame rate up (the number of pictures per second). This will make your graphics
smoother and more enjoyable to look at.

3D graphics takes time. It takes 3D a certain amount of time to draw every block of
every 3D object. It also takes some time just to decide not to draw an object or a block
that is off screen. The actual amount of time taken depends very much on the
circumstances. Here are some facts:

Distant objects
If an object is a long way from the viewpoint you may see little more than a dot.
Nonetheless, 3D will still have a lot to do and this will take some time. If your application
contains sequences where objects get very small, use depth culling, which is a way of
stripping objects of unnecessary detail when this is small compared with screen
resolution. OM can set up depth culling for you.

Objects in the middle distance
Lots of applications contain objects that are seen in the middle distance, that is where
they cover a smallish area of the screen. These are much faster than objects that are
close up. The time taken to draw an object is related to the screen area it covers. Bear in
mind that if you halve the distance of the viewpoint to an object, its screen area will
increase by 4.

Ideally objects should spend most of their time in the middle distance, only occasionally
getting close to the viewpoint. Don't let too many objects come close at a time.

Close objects
These take the longest amount of time to draw. They are objects that cover most of the
screen and require lots of clipping. This all takes time. Of course it adds drama to a
game when the objects come close enough to touch. However it is often even more
dramatic if they don't stay there for too long. Even if your frame rate slows down a little
as a ship rushes past the viewpoint, you will still retain the impression of smooth
graphics as it speeds up again quickly.

8M

Invisible objects
Objects can be invisible because they are outside the field of vision or because they are
obscured by other objects. In the first case, 3D can often tell quite early on as it
processes an object that it won't be visible and can save most of the calculation (this is
known as first rejection). If it's only just outside the field of vision though first rejection
may not be so easy. If you know that an object is not going to be seen, move it well out
of the way (or kill it completely).

In the second case, where one object obscures another, there is less that 3D can do.
In the worst cases 3D may draw the more distant object completely only to cover it up
again with the closer one! One of the best ways to waste time is by having several
objects close up which obscure one another.

Object complexity
The time it takes to render an object rises steeply with its complexity. A six-block object
may take more than twice the time of two three-block objects. You should look on blocks
as being like gold dust. Use the absolute minimum and when you do decide to use an
extra block get full value out of it. For example avoid objects where blocks have many
points and lines in common. Objects often look complex and interesting according to
how busy they are. Try to design objects with lots of visible faces. Actually, with a little
thought you can use surface detail transparencies to increase the apparent complexity
of objects with very few blocks. Surface detail is very fast especially if it's simple. Look at
the example objects and take them apart. See how economically the designer has used
his blocks.

The Compiler
When you first start writing a 3D game you will probably find the speed of 3D sufficient.
After all the 3D code itself is among the fastest there is. As your program grows though
you will probably find that things start to slow down. STOS is a very fast BASIC but it still
has an enormous amount to do. Every statement has to be interpreted each time it is
executed. That is where the compiler comes in. It won't speed up the actual 3D drawing
but it will cut down drastically on that interpretation overhead, and a lot more besides.
Aside from that, be sure that you are using the fastest STOS commands. Use integers
rather than floating point (3D itself uses integers throughout). If you need slow
trigonometric functions like Sin and Cos create a table and use that rather than the
functions themselves.

Keeping a game busy
In a 2D game you know where you stand. If you draw a sprite you usually know that the
player can see it. 3D objects are not like that - you have to make sure they can be seen.
It's easy to arrange beautiful flight paths and attack sequences for your ships, only to
find that the player is miles away or looking in the other direction.

The answer is to bring the mountain to Mohhamed and not the other way round.
Many arcade style games contain a routine which generates new characters as others
die. A 3D version of this type of routine should find out the position and attitude of the
viewpoint and generate new objects somewhere that they will be seen, perhaps

90

appearing out of the distance or from one side. A good technique is to check all your
objects regularly to see whether they are visible or likely to become so.

If an object is miles away kill it off and generate a new one, or better still, simply
move it in one jump to a position just off stage. It is often very effective to have your
objects tend to head for the viewpoint when they're not doing anything else. This will at
least keep them in range.

If you want to give an impression that 3D space is filled with objects you don't
actually have to do this. All you have to do is fill the portion of space that the player can
see. In other words, don't imagine that you can set up a 3D world full of objects for the
player to explore. No home computer is anything like powerful enough for this. Some
games give this impression but they do it by the sort of trickery we have been
discussing.

Housekeeping
All games have to do some housekeeping. Numbers must be kept in range, dead entries
deleted from arrays and so on. A typical piece of 3D housekeeping is to check every so
often that objects have not wandered off into the infinity of 3D space. This sort of routine
does not need to be called every frame. Before you put code into your redraw loop ask
yourself whether it really needs to be executed that often. If the code is more than a
statement or two it's probably much cheaper to increment a counter and do a job once
every few frames. A lot of games would be faster if this technique was used more often.

Smooth movement
Although 3D is fast, no 3D system can be as fast as 2D graphics such as sprites and
scrolling backgrounds. Smooth movement depends on many things but a display will always
look jerky if objects move too far across the screen between one frame and the next.

3D objects look great coming out of the distance. They can also look good passing
across the field of vision. It is bad practice though to have objects executing a path
which is largely on screen and in which they are displayed at very different positions in
consecutive frames. Even if the frame rate is high this will look jerky because the eye is
not getting enough information to construct the illusion of movement.

Another very important point that has considerable bearing on smoothness concerns
how you handle velocity. In 3D graphics every frame takes a different amount of time to
draw. If you make an object move by adding the same amount to its position every
frame it will constantly appear to be changing speed. Remember that distance = velocity
* time. To obtain smooth constant velocity you should time each frame and use a
number proportional to this for your frame by frame position change. Even this is not
quite accurate because you cannot know how long a frame will take until it is over.
Nonetheless the method does usually produce good results.

Flight paths
The following is a very useful technique for generating interesting flight paths for objects
in 3D space. Suppose you want to program a dog fight between two ships A and B (one
might be the viewpoint). Start the objects off some distance from one another and give
them some reasonable velocity in a random direction using the TD Forward command in

91

your redraw loop. Every 10 frames or so take the bearing of A from B. Now, over a few
frames gradually adjust B's attitude to that it ends up facing A. Do exactly the same thing
the other way around for the other object, but not on the same time scale, say every 13
frames. With a little experimentation and adjustment you can achieve some very
graceful effects. Add a little randomisation to the time intervals, velocities and so on for
variety.

Normalisation
Normalisation is a way of keeping a game's action from straying too far away from the
work origin. This is sometimes necessary if you want to keep the numbers reasonable
and not stray out of 3D's world. Normalisation depends on the fact that an arrangement
of 3D objects is completely unaffected if everything is shifted in space to a different
location (of course the viewpoint must be shifted too). Normalisation can be done as
often as you like but every 100 frames or so is usual. Simply subtract the coordinates of
the viewpoint x, y and z from the position of every object and set the viewpoint's position
to (0,0,0).

Viewpoint control
This is the method you use to control the position and attitude of the viewpoint with the
mouse or joystick, and it can be a tricky business. Unless you are an expert don't
attempt to write a control system which gives the operator freedom to point and travel in
any direction. A little experimentation will show you why.

Limit the view angle. Allow the viewpoint to rotate about the y-axis freely but prevent
it from looking straight up or down or nearly so. Instead, move the viewpoint up and
down physically. This will give an intuitive feel to the controls. Think carefully about how
you want the mouse to affect the viewpoint's attitude. Should a movement of the mouse
to the left turn the view through a certain angle and then stop? Or should it start the view
spinning until the mouse moves back?

In fact neither of these is very satisfactory. A jerk on the mouse should start the
viewpoint spinning but the rotation should be heavily damped and not carry on forever.
For best results, use a combination. Move the viewpoint through an angle directly and
give it a little damped rotational velocity.

Relative velocities
A problem that you may run into concerns the relative velocities of objects and the
viewpoint. If the viewpoint is allowed to travel too fast it will be uncontrollable and objects
will flash by before you have time to react. If the viewpoint can't move fast enough it will
seem to take forever to get anywhere. You should think carefully about the distances
you work with. A typical object should be possible to reach in a reasonable time at a
speed which does not cause it to flash by once you get there.

92

Appendix A
Making a back-up
of OM

OM is a complex program and consists of more than just a single program file. The OM
disc will autoboot, but it can also be loaded from the Desktop or from a hard disc. If you
wish to make another autoboot OM disc, simply copy the disc in the usual way.
Otherwise, here is what to do:

Copying OM to a directory on another floppy
disc or to a hard disc
Copying OM to another directory is very straight forward.

To create a non-autoboot version of OM, copy the entire OM folder along with the file
OM.PRG (found in the AUTO folder) to your destination directory.

To create an autoboot version of OM, copy the OM folder and the AUTO folder into the
root directory of your destination disc.

Setting the ID.
There is one further thing that you must do every time you make a new copy of OM,
whether by copying the whole disc or by installing OM on a floppy or hard disc
directory.

To make sure that OM doesn't get confused about surface files (see Appendix B -
File structure) you must also run the utility program SID.
AFTER you have copied the OM directory, load SID.TTP from your new directory and
enter a unique two character identifier when requested.
The identifier will form the first two characters of all surfaces generated with that copy
of OM.

93

Object .3DO

Template .3DT

Appendix B
File structure

If you are using 3D at all seriously, or you wish to swap objects with friends, you should
read the following.

The example objects and the objects that you design yourself appear on the disc
directory as single files. When you load an object you supply the filename and OM or
STOS does the rest. In fact objects are made up of several components, each with its
own disc file. If you are interested in the reason for this it is explained below.

There are three types of file in all. Object files, Template files and Surface files. You
can tell which are which by the three character extension which follows the file names;
these are .3DO for objects, .3DTfor templates and .3DS for surfaces.

When you refer to an object in 3D you don't need to supply the extension. 3D adds it
for you (this is a little like many word processors which add an extension like .DOC to
the end of file names). You also don't need to know about templates or surfaces as 3D
takes care of all that too. The only fact that you should be aware of is that the surface
and template files must be in the directory containing your objects. If you copy an object
you will have to copy its surfaces and templates too. A simpler way to copy an object is
to load it into OM and then save it again to another disc or directory.

Surface files (.3DS)
These contain the surface details that you design to decorate the faces of your objects.
There is one surface file for each unique picture that you design. When you copy a
surface from one object to another OM uses the same surface file for both objects.

Template files (.3DT)
The purpose of these is a little less obvious. They contain details of the structure of the basic
building blocks. There is one for each of OM's basic block types and there are others which
go with some of the example objects. Once again, when you grab a block from an existing
object to use in a new one 3D shares the template rather than creating a duplicate.
Templates describe basic block structure. When you customise a block using the OM tools,
you don't affect the template itself, only the way it is used in your object.

Here is a summery of the three types of file:

Type File extension Contents

All information having to do with the object as a
whole, along with the names of all associated files.

Information relating to an individual block type. There
is a reference to a template for every block in an object.

95

Surface .3DS A description of an individual surface detail. There is a reference
to a surface for each decorated face in an object.

As you can see, the information describing an object may be spread over several files.
One might well ask why this is not held in a single file; the reason is as follows:

The relationship between objects and object files is 'one to one', that is there is one
object file for every object and visa versa. The corresponding relationship between
objects and surfaces however is many to many. For example an object can refer to
many surfaces and many objects can refer to the same surface. The same goes for
templates. It would be wasteful to use up disc space and memory by holding the same
surface or template over and over again for different objects (or the same object). For
this reason 3D keeps only one copy of each. When you load an object under OM or
STOS, 3D checks to see whether it already has a copy of its surfaces and templates
before loading them. Of course the same block or surface may not look the same in
different objects but to 3D they are essentially the same.

The file structure of objects has important implications when it comes to copying or
deleting objects because template and surface files must also be copied for the object to
be complete. This is the reason for the OL (Object Look) utility which asks for an object
name and lists its templates and surfaces so that these can be copied or deleted. An
alternative way of copying an object is to load it into OM and then save it again to
another disc or directory.

Surface names
It would be very tiresome if, every time you saved an object you had to invent names for
all its surfaces. It would also be annoying if you had to supply a name every time you
created or changed a surface. It would also be unsatisfactory to name surfaces after
their objects (perhaps with an extension) because many objects can have the same
surface (for example the damage surface detail described under Td Surface). Instead
OM generates names for surfaces based on sequential numbering. These have the form

<2-character-identifierxsequence-number>.3DS

Both the two character identifier and the current sequence number is held in the OM
directory in a file called id. The file contains the following

dirid(xx),surgen(yy)

where xx is your identifier and yy is the sequence number of the last surface saved.

WARNINGdf you wish to swap objects with someone who also has a copy of 3D, or you
simply want to keep several OM directories it is important to use different identifiers. This
can be done either by editing the file or by using the supplied utility SID (Set Identifier).

96

Appendix C
The utilities

3D comes with three utilities to help you maintain your Object files. These programs are
all stored in the UTILS folder on the OM disc. It will help you to understand the utilities
better if you first read the appendix on File Structure. The utilities will run from the
Desktop as .TTP programs. The programs require a pathname (optional) or filename
which can be entered either in the GEM dialogue box or when asked by the program.

OL (Object Look)
OL accepts an object name, examines the .3DO file and reports the names of the
templates and surfaces associated with it. The template and surface files will have the
extensions .3DT and .3DS respectively. When you delete an object, don't delete its
templates and surfaces unless you are certain that they are not referenced by any other
object. Templates are few in number and should not be deleted. Unreferenced surfaces
can be removed with the PRUNE utility.

OL must be run from the Desktop in the directory containing the object (.3DO) file.
For the regular STOS users, the same program can be found on your installed disc.

You'll find this easier to use as it supports a handy STOS file selector.

SID (Set Identifier)
SID allows you to choose the two character identifier on which OM bases the surface
names that it generates. It reports the current identifier and asks for a new one. It then
updates the ID file.

The ID file is located in the OM directory and not in directories containing the objects
themselves. It is very important that each copy of the OM directory contains a unique ID
file. If two ID's are the same OM will get confused about which surfaces are which and
may overwrite existing ones.
SID should be run from the Desktop in the OM folder. For your convenience we have
placed a second copy of SID in the OM folder on the OM disc.

PRUNE (Clean up an object directory)
In 3D, each surface detail has a separate .3DS file. If any of the surfaces belonging to a
given object have been copied to other objects, the surface will become multi-user; it will
be shared by several objects.

When an object is deleted its surfaces should be left intact in case they belong to
other objects as well. Because of this, an object directory that has been in use for a time
can accumulate 'orphan' surfaces that are not attached to any object. This can happen
either because all associated objects have been deleted or because surfaces have been
re-edited, leaving the old ones without an owner.

The PRUNE program looks at every object and surface in the current directory and
cross references them to build a list of any unattached surfaces. If it finds any, it will ask

97

whether to delete them. PRUNE will also list any objects that contain non existent
surfaces (see note below).

PRUNE should be run from the Desktop in the directory containing the objects to be
examined.

Missing surface files
We all make mistakes and sometimes a surface can get deleted accidently. If this
happens, any object which uses it will fail to load, either under OM or via Td Load. There
is no way of getting the deleted surface back but you can make the object loadable
again by supplying a surface of the same name as the deleted one.

The best way to do this is to run PRUNE which will report all missing surfaces. Once
you know the names of your missing surfaces you can copy any existing surface giving
the new copy the name of the missing one. The object should now load with the copied
surface in the place of the lost one.

98

Appendix D
STOS 3D error

3d background source screen is current screen: The source screen for Td
background can't be the current screen.

Bad Object/Template/Surface file: The specified file is either corrupted or is not a
valid 3D file.

Block does not exist: You have specified a block number that does not exist in the
given object.

Can't change screen size while objects exist: You must kill off all your objects
before trying to change the size of the screen.

Directory string too long: The pathname you have supplied to the TD Dir command is
too long.

Face does not exist: You have specified a face number that does not exist in the
given object.

Invalid 3d screen size: The 3D screen height ranges from 1 to 200 lines.

Invalid object number: Valid object numbers range from 0 to 20. Object 0 is the
viewpoint, it can't be created or killed.

Not enough memory for 3D: 3D has run out of memory.

Object already exists: You have tried to invoke an object which already exists.

Object already loaded: You have tried to load the same object twice.

Object does not exist: You have specified the object number of an object which does
not exist.

Object file not found: 3D can't find an object file you require. Check the object name
is correct and, if you have changed the 3D object directory, check the directory you
have specified is correct.

99

Object not loaded: The object name you have specified has not been loaded using Td
Load

Point does not exist: The point you have specified does not exist in this object. Check
the object number and the point number.

Surface file not found: 3D can't find an object's surface file. Use the OL utility to list
out all the files the object uses.

Syntax error in string: A movement or angle string is incorrect.

Td Init used more than once: Td Init can only be used once in a program.

Template file not found: 3D can't find an object's template file. Use the OL utility to list
out all the files the object uses.

Too many objects: There are too many objects loaded and 3D can't cope! This
message should never occur, if it does check you haven't got lots of unused objects
loaded.

Zone parameter(s) out of range: The 3D collision zone you have specified is too big.

Compiler only error messages
Td Init must be the first 3D instruction in a compiled program: The first 3D
instruction in a compiled 3D program MUST be Td Init. (Td Init is optional for
interpreted programs).

The STOS-3D compiler extension prints error messages.
In a system like 3D, which contains so many new commands, debugging a compiled

program might be a problem if only irrelevant STOS error numbers were produced. If
an error occurs in a compiled program 3D prints its error message and prompts for the
user to press a key. Once the key is pressed a normal STOS compiler "Syntax error' is
reported.

100

Glossary
Throughout this manual we have tried to keep the language free of unnecessary joxquiz.
All the same, 3D graphics is quite a technical subject and so we have provided this
glossary to explain unfamiliar terms.

2D: A space with two dimensions. A flat piece of paper or a computer display
is an example of a 2D space.

3D: A space with three dimensions. The physical world is an example of 3D
space.

ANGLES A,B,C: These are the angles used in Td angle commands.

A is the angle about the x-axis
B is the angle about the y-axis
C is the angle about the z-axis

Angles are measured in VRU's (Voodoo Rotation Units)

Axis: A scale on a coordinate system used to measure distances in a particular
direction. In 3D we use three AXES, the x-axis running left to right, the y-axis, drawn
vertical and the z-axis pointing into the distance. The word is also used to describe a line
(an imaginary one) about which a point or object is rotated.

Block: One of the basic shapes used to build 3D objects

Coordinate system: A set of AXES usually set at right angles to one another. A
coordinate system gives you a way to express the position of points and objects.

Depth culling: A method of reducing the complexity of objects as they get further away.
Culling is used in 3D to speed up the display of distant objects.

Dimension: The direction measured by a given axis in a coordinate system.

Double buffering: A method of graphics rendering in which two screens are used. One
screen is displayed while a new scene is prepared on the other. When the new scene is
complete, the hidden screen is displayed and drawing begins on the other and so on.
Also known as screen swapping.

Face: One of the flat areas on a block.

Graph: A representation of a coordinate system, usually in two dimensions.

Group: One or more of the blocks comprising an object can be selected as a group.
Many of OM's commands work on groups.

101

Line: A straight edge bordering a face.

Local coordinates: A set of coordinates based around a particular object. The
Observer Coordinate System is an example of local coordinates.

Object: This word is used in the 3D manual to refer to the fundamental unit of 3D
design. An object consists of blocks and surface details.

Object component: The parts of an object.

Observer coordinates: A coordinate system based on the 3D camera.

Origin: The point at which the axes meet in a coordinate system.

Perspective: A way of drawing 3D scenes on a flat surface like a piece of paper or a
computer display. 3D generates perspective views. There are other ways of doing the
same thing, for example archetechet's 'Orthographic' projection. Perspective is the most
realistic because it is a perspective image that appears on the eye's retina.

Point: The place where two or more lines meet. In this context a point is the same as a
vertex.

Projection: The result of transferring a point or object from a coordinate system into a
system with a different number of dimensions.

Rotation: The process of moving a point or an object through an angle relative to an
AXIS OF ROTATION.

Shelf: An area of the OM graphics screen used to hold objects.

Surface detail: A picture which can be attached to one or more faces. Each surface
detailed designed with OM and attached to a saved object is written to a disc file which
ends in the extension .3DS.

Td: The word Td (Three Dee) precedes all the STOS 3D commands.

Template: A disc file containing information concerning the structure of a block. The
names of all templates begin with the letter p or f (for flat), are followed by a number
equal to the number of points in the shape and end with the extension .3DT. Every block
in a 3D object refers to a template.

Transformation: A transformation is the calculation applied to a point to find its position
in a different coordinate system or to find its position after an operation such as rotation.

Translation: Translation means change in position.

Vertex / vertices: Any place on an object where lines meet at a point, for example the
corners of a cube.

102

Viewpoint: The point in 3D space from which 3D views its internal world. In 3D the
viewpoint is an object like any other and has object number zero.

VLU: VLUs or Voodoo Length Units are used in 3D to measure lengths.

VRU: VRUs or Voodoo Rotation Units are used in 3D to measure angles. 65536 VRUs
is the same as 360 degrees.

World coordinates: A coordinate system used to represent the whole 3D world.

103

u

u

_

u

_

_

u

_

	Front Cover
	Title Page
	Contents
	Contents 2

	1: Welcome to the world of 3D
	Making a disc back-up

	2: In the beginning
	3: Quick start
	How to use this manual

	4: Updating to the latest version of STOS
	5: Installing the 3D extension
	6: The object modeller
	Introduction
	Loading
	Getting to know OM
	The OM screen
	Selecting shelves
	Selecting parts of a block
	Gluing blocks together
	Saving objects
	Customising blocks
	Pulling lines
	Pulling points
	Groups
	Surface detail

	7: The object modeller tools
	7.1: Primary Commands
	The Unite or gluing tool
	Copy tool/Copy group tool
	Precedence/Culling tool
	Delete object tool
	Delete block/delete group tool
	Snap/Centre tool
	Undo tool
	Zoom tool
	XZ-Align tool
	YZ-Align tool
	XY-Align tool
	Highlight mode tool
	File tool
	Info tool
	Surface detail tool
	Colour combination tool
	RGB tools
	Reset tool
	Quit tool
	Rotation tool
	XYZ tools
	Problem objects

	7.2: The Block level tools
	Component selection tools
	Block selector
	Face selector
	Line selector
	Point selector
	Surface anchor points
	Pull tool
	Pulling rules
	Selecting the sensitivity of the pull tool
	Undo tool

	7.3: Group commands
	Group hightlighting
	Selecting a group
	Face relative movement tools
	Face relative slide tool
	Face relative Normal tool
	Face relative Rotation tool
	Axis relative movement commands
	XY group displacement
	Z group displacement
	Set rotation centre
	Axis relative rotation tool
	The symmetry tools
	Verical symmetry tool
	Horizontal symmetry tool
	Stretching tools
	Horizontal stretching tool
	Vertical stretching tool
	Sizing
	The 3 axis stretching or sizing tool
	Aligning groups
	Copying and deleting groups
	Copy group tool
	Delete group tool

	7.4: Surface detail
	Component selection
	Closed edges
	Drawing on the editing grid
	Attaching a surface to a face
	Surface complexity
	Positioning the surface
	Attaching surfaces to 2D (flat) blocks
	Re-using surfaces
	Copying surfaces between objects and within objects
	The surface toolbox
	Line colour selection/colour flip tools
	Line editing selectors
	Transfer tool
	Edit tool
	Surface attitude tool
	Grid clear tool
	Surface removal tool
	Line Undo tool
	Quit Surface detail tool

	8: 3D Programming
	8.1: The 3D World
	Introduction
	Space
	Setting up a moving 3D display
	Angles
	The local coordinate system
	The viewpoint
	Choosing the best coordinate system

	8.2: The STOS commands
	Positions
	Angles
	Objects
	The display
	The Redraw loop
	Loading and removing objects
	Invoking objects
	Object movement commands
	Reading an objects position
	Changing the attitude of objects
	Reading an objects attitude
	String commands
	Bearing and range
	Pointing an object
	Converting between coordinate systems
	Checking an objects visibility
	Collision detection and zones
	Animation
	Shape animation
	Surface animation
	Backgrounds
	Background colours
	Display problems
	Interleaving objects
	Object precedence
	Screen swapping
	memory

	9: Hints & Tips
	Appendices
	A: Making a back-up of OM
	B: File structure
	C: The utilities
	D: STOS 3D error messages

	Glossary
	Back Cover

